Dot product in Rⁿ

The dot product of two vectors $\boldsymbol{u} = (u_1, u_2, ..., u_n)$ and $\boldsymbol{v} = (v_1, v_2, ..., v_n)$ in Rⁿ is defined to be $\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + ... + u_n v_n$.

Properties

- 1. $u \cdot v = v \cdot u$
- 2. $u \cdot (v+w) = u \cdot v + u \cdot w$
- 3. $(c\mathbf{u})\cdot\mathbf{v} = c(\mathbf{u}\cdot\mathbf{v})$

4. $u \cdot u \ge 0$; $u \cdot u = 0$ if and only if u = 0

Definition The length of the vector $u = (u_1, u_2, ..., u_n)$ in \mathbb{R}^n is defined by $|u| = (u_1^2 + u_2^2 + ... + u_n^2)^{\frac{1}{2}}$. The distance between two points (vectors) u and v in \mathbb{R}^n is given by d(u, v) = |u - v|.

Let u and v be two vectors in \mathbb{R}^n , then the following inequalities are satisfied

Cauchy-Schwarz Inequality $|u \cdot v| \leq |u| |v|$

Triangle Inequality $|u+v| \le |u|+|v|$

Definition Suppose that u and v are two nonzero vectors in \mathbb{R}^n . Then the angle between u and v is a unique number θ , $0 \le \theta \le \pi$, such that $u \cdot v = |u| |v| \cos \theta$.