Orthogonal Vectors in Rⁿ

Definition Two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n are called orthogonal if $\boldsymbol{u} \cdot \boldsymbol{v} = 0$.

Pythagorean's formula If u and v are orthogonal then $|u+v|^2 = |u|^2 + |v|^2$.

Theorem If nonzero vectors $v_1, v_2, ..., v_k$ are mutually orthogonal they are linearly independent.

Orthogonal Complements

Definition A vector \boldsymbol{u} is orthogonal to a subspace V of \mathbb{R}^n provided that \boldsymbol{u} is orthogonal to every vector in V. The set of all those vectors in \mathbb{R}^n that are orthogonal to the subspace V is called the orthogonal complement of V.

We denote the orthogonal complement of V by V^{\perp} .

Properties

- 1. V^{\perp} is a subspace of \mathbb{R}^n ,
- 2. the only vector that lies in both V and V^{\perp} is zero vector,
- 3. $(V^{\perp})^{\perp} = V$.

dim V + dim $V^{\perp} = n$