Orthogonal Projection and Least Square Solution

Theorem Let V be a subspace of \mathbb{R}^n and V^{\perp} be its orthogonal complement. Then for any vector **b** in \mathbb{R}^n there exists a unique decomposition b=p+q, where **p** is a vector in V and **q** is a vector in V^{\perp} .

Definition In the above decomposition p is called the orthogonal projection of b onto V.

Assume that the system Ax=b has no solution. It means that b does not lie in the column space of A. Let V=Col(A), and let p be the orthogonal projection of b onto V.

The least square solution of Ax=b is the vector x for each $||Ax-b||^2$ is the least possible. Then Ax=p.

To find the least square solution of the system Ax=b, we consider the normal system associated with that one: $A^{T}Ax=A^{T}b$. Solution of the normal system is the least square solution of the initial system.

Matrix $\mathbf{A}^{T}\mathbf{A}$ is a square matrix and if \mathbf{A} is an $m \times n$ matrix with rank(\mathbf{A})=n, then $\mathbf{A}^{T}\mathbf{A}$ is non-singular.