Orthogonal Basis and Gram-Schmidt Algorithm

Definition An orthogonal basis for the space V is a basis $v_1, v_2, ..., v_k$ for which $v_i \cdot v_j = 0$ when $i \neq j$.

If in addition $v_i \cdot v_i = 1$ for each i=1,...,k, then the basis is called an orthonormal basis.

Suppose that V has an orthonormal basis $v_1, v_2, ..., v_k$. Then the projection p of a vector b onto V is given by the formula

$$\boldsymbol{p} = \boldsymbol{v}_1 \cdot \boldsymbol{b} \ \boldsymbol{v}_1 + \boldsymbol{v}_2 \cdot \boldsymbol{b} \ \boldsymbol{v}_2 + \dots + \boldsymbol{v}_k \cdot \boldsymbol{b} \ \boldsymbol{v}_k$$

The Gram-Schmidt Algorithm

Suppose that $v_1, v_2, ..., v_k$ is a basis of a subspace V of Rⁿ, to find an orthogonal basis $u_1, u_2, ..., u_k$ for V we can use the following algorithm:

 $u_1 = v_1$,

$$u_{2} = v_{2} - \frac{u_{1} \cdot v_{2}}{u_{1} \cdot u_{1}},$$

$$u_{1} \cdot u_{1}$$

$$u_{k} = v_{k} - \frac{u_{1} \cdot v_{k}}{u_{1} - u_{1} - u_{2} - \dots - u_{k-1} \cdot v_{k}},$$

$$u_{k-1} \cdot u_{k-1} \cdot u_{k-1}$$