Eigenvalues and Eigenvectors

Definition Let *A* be an *n* by *n* matrix. A number λ is called an eigenvalue of *A* if there exists a nonzero vector *v* such that $Av = \lambda v$.

Definition A nonzero vector v such that $Av = \lambda v$ is called an eigenvector of A corresponding to the eigenvalue λ .

Theorem A number λ is an eigenvalue of A if and only if $det(A-\lambda I) = 0$.

The characteristic equation $det(A-\lambda I) = 0$ is a polynomial equation in λ of degree *n*.

To find the eigenvalues and eigenvectors of a square matrix

- 1. Solve the characteristic equation $det(A \lambda I) = 0$.
- 2. For each eigenvalue λ solve the linear system $(A-\lambda I)v=0$ and find the eigenvectors corresponding to λ .

If we fix an eigenvalue λ then the solutions of the system $(A-\lambda I)v=0$ form a subspace of \mathbb{R}^n that is called the eigenspace of A associated with λ .