Diagonalization of Matrices

Definition Square matrices *A* and *B* are called **similar** if there exists an invertible matrix *P* such that $B=P^{-1}AP$.

DefinitionA square matrix is calleddiagonalizableif it is similar to a diagonal matrix.

Theorem An n by n matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

If matrix A is diagonalizable, $A=PDP^{-1}$, then D is a diagonal matrix with eigenvalues of A on the diagonal, it is called the eigenvalue matrix, columns of P are linearly independent eigenvectors of A and P is called the eigenvector matrix.

Theorem If v_1 , v_2 , ..., v_k are eigenvectors of A corresponding to distinct eigenvalues λ_1 , λ_2 , ..., λ_k , then they are linearly independent.

Corollary If an n by n matrix A has n distinct eigenvalues it is diagonalizable.

If A is a diagonalizable matrix, $A = PDP^{-1}$, then we can calculate the powers of A using the formula

 $A^m = PD^m P^{-1}$