First-Order Systems: General Theory

 $y_{1}' = f_{1}(t, y_{1}, y_{2}, ..., y_{n})$ $y_{2}' = f_{2}(t, y_{1}, y_{2}, ..., y_{n})$... $y_{n}' = f_{n}(t, y_{1}, y_{2}, ..., y_{n})$

The above system can be written as a vector equation $\mathbf{y}' = \mathbf{f}(t, \mathbf{y})$, where $\mathbf{y} = (y_1, y_2, ..., y_n)^T$ and $\mathbf{f} = (f_1, f_2, ..., f_n)^T$.

Initial value problem $y' = f(t,y), y(t_0) = y_0$.

Linear Systems are systems of the form

$$y_{1}' = a_{11}(t) y_{1} + a_{12}(t) y_{2} + \dots + a_{1n}(t) y_{n} + g_{1}(t)$$

$$y_{2}' = a_{21}(t) y_{1} + a_{22}(t) y_{2} + \dots + a_{2n}(t) y_{n} + g_{2}(t)$$

$$\dots$$

$$y_{n}' = a_{n1}(t) y_{1} + a_{n2}(t) y_{2} + \dots + a_{nn}(t) y_{n} + g_{n}(t)$$

it can be written as a vector equation y' = Ay+g. The system is called homogeneous if g=0.

Superposition Principle for Homogeneous Systems If $y^{(1)}$ and $y^{(2)}$ are solutions of the homogeneous system y' = Ay then $c_1 y^{(1)} + c_2 y^{(2)}$ is also a solution.