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Problem 1 Find all solutions of the following system of equations:

rT— y+22=28
—2x 4+ by —4z = —-20
—r+ y— z=-10

Problem 2 Consider the following vectors in R3:
3 —2 1 4
Vi = -3 , Vg = 2 , V3= -1 s b= -9
—6 4 8 3

Are the vectors vy, vo and v3 linearly independent? Is b a linear combination
of vi, vy and v3?

Problem 3 Find the general solution of the system
{ v =Ty — 24
Yy = 2y1 + 2y,

and sketch the phase plane plot.

Problem 4 Consider the three points
0 1 2
S L e f

Find the polynomial p(x) = ax? + bz + ¢ of degree two that goes through all
these points.

in R2.

Use the method of least squares to find the polynomial ¢(x) = dx + e of degree
one that best fits the three points.

Draw the graphs of p and gq.
Problem 5 Let A be the following matrix:
9 -3
=157

Find all 2 x 2-matrices X that are solutions of the equation AX = X A.
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Problem 6 Find an orthogonal basis for the subspace of R* spanned by
these vectors:

2 1 1 2
1 0 1 1
Vi = 11 Vo = —9]|> V3 = 11 V4 = -1
0 1 0 1

Problem 7 Let R be the following matrix:

= l—%/z ﬁg/ﬂ

Compute R*2.

Problem 8 Let A be the following complex matrix:

2 4+ 5—=3
A=14 20 10+ 2
2t —1 4461

First: Find a basis for Null A and a basis for Col A.
Then: Find all vectors v in C? such that Av =0 and ||v|| = 1.
Problem 9 Recall that we write M for the vector space consisting of all
real 2 X 2-matrices. Define a function T: My — My by
T(M)=M—-M".

Show that T is a linear transformation, and find ker 7" and im T'.

Problem 10 Let A be an m xn-matrix with linearly independent columns,
and let B and C be n X p-matrices. Show that if AB = AC', then B = C.



