

Department of Mathematical Sciences

Examination paper for TMA4110 Calculus 3

Academic contact during examination: Øystein Skartsæterhagen and Morten Nome Phone: 95 92 55 96

Examination date: 4 December 2018

Examination time (from-to): 09:00-13:00

Permitted examination support material: No printed or hand-written support material is allowed. A specific basic calculator is allowed. (Casio fx-82ES PLUS, Casio fx-82EX, Citizen SR-270X, Citizen SR-270X College, Hewlett Packard HP30S)

Other information:

The exam consists of ten problems. Each of these carries the same weight towards the grade. Give reasons for all answers.

Language: English Number of pages: 2 Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave						
Originalen er:						
1-sidig		2-sidig	\boxtimes			
sort/hvit	\boxtimes	farger				
skal ha flervalgskjema 🛛						

Checked by:

Date

Signature

Page 1 of 2

Problem 1 Find all solutions of the following system of equations:

$$\begin{cases} x - y + 2z = 28\\ -2x + 5y - 4z = -20\\ -x + y - z = -10 \end{cases}$$

Problem 2 Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 3\\-3\\-6 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2\\2\\4 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\-1\\8 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4\\-9\\3 \end{bmatrix}$$

Are the vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 linearly independent? Is \mathbf{b} a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 ?

Problem 3 Find the general solution of the system

$$\begin{cases} y_1' = 7y_1 - 2y_2 \\ y_2' = 2y_1 + 2y_2 \end{cases}$$

and sketch the phase plane plot.

Problem 4 Consider the three points

$\begin{bmatrix} 0\\ -1 \end{bmatrix},$	$\begin{bmatrix} 1\\1 \end{bmatrix}$	and	$\begin{bmatrix} 2\\7\end{bmatrix}$
---	--------------------------------------	-----	-------------------------------------

in \mathbb{R}^2 .

Find the polynomial $p(x) = ax^2 + bx + c$ of degree two that goes through all these points.

Use the method of least squares to find the polynomial q(x) = dx + e of degree one that best fits the three points.

Draw the graphs of p and q.

Problem 5 Let *A* be the following matrix:

$$A = \begin{bmatrix} 9 & -3 \\ -3 & 2 \end{bmatrix}$$

Find all 2×2 -matrices X that are solutions of the equation AX = XA.

Problem 6 Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by these vectors:

$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 2\\1\\-1\\1 \end{bmatrix}$$

Problem 7 Let R be the following matrix:

$$R = \begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}$$

Compute R^{42} .

Problem 8 Let *A* be the following complex matrix:

$$A = \begin{bmatrix} 2 & i & 5 - 3i \\ 4 & 2i & 10 + 2i \\ 2i & -1 & 4 + 6i \end{bmatrix}$$

First: Find a basis for $\operatorname{Null} A$ and a basis for $\operatorname{Col} A$.

Then: Find all vectors \mathbf{v} in \mathbb{C}^3 such that $A\mathbf{v} = \mathbf{0}$ and $\|\mathbf{v}\| = 1$.

Problem 9 Recall that we write \mathcal{M}_2 for the vector space consisting of all real 2 × 2-matrices. Define a function $T: \mathcal{M}_2 \to \mathcal{M}_2$ by

$$T(M) = M - M^{\top}.$$

Show that T is a linear transformation, and find ker T and im T.

Problem 10 Let A be an $m \times n$ -matrix with linearly independent columns, and let B and C be $n \times p$ -matrices. Show that if AB = AC, then B = C.