

1 Calculate the determinant of the following matrices. Are they invertible?

a)		c)					
	$\begin{bmatrix} 3 & 4 \end{bmatrix}$		Γ1	2	3	4	5
			0	1	6	7	8
- \	L J		0	0	1	9	10
b)	с ¬		0	0	0	0	11
	$\begin{vmatrix} -2 & 2 & 2 \\ -2 & -2 & -2 \end{vmatrix}$		0	0	0	0	1
			-				-
	$\begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$						

2 (From yesterday!) For which values of $a \in \mathbb{R}$ is the matrix

$$A = \begin{bmatrix} 1 & 0 & a \\ a & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$$

invertible? Use the determinant.

3 Find the characteristic polynomial of the matrix

$$U = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}.$$

What are the eigenvalues?

a)

b)

(More generally, can you show that the eigenvalues of a $n \times n$ upper (or lower) triangular matrix are given by the numbers on the diagonal?)

4 Find the eigenvalues, their algebraic- and geometric multiplicities, and their corresponding eigenvectors for the following matrices:

$$A = \begin{bmatrix} 5 & 2\\ -3 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & -9 & 4 \end{bmatrix}$$