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Problem 1 Determine all roots of p(z) = z4 + 16 and plot the roots in the
complex plane. Factorize p(z) in terms of linear factors.

Problem 2 Consider the three points

(0,−3), (1,−1) og (2, 5)

in R2.
Find the polynomial p(x) = ax2 + bx + c of degree two that passes through all
these points and apply the method of least squares to determine the polynomial
q(x) = dx + e of degree one that is the best fit for the three points.

Problem 3 Let A be the 3× 3-matrix

A =

a− 1 4 2
0 a 1
0 6 a + 1

 .

a) Determine all real numbers a such that det A 6= 0. Determine the dimension
of Col A (the column space of A) for all values of a.

b) Depending on a, find all real numbers b such that the system

A · x =

6
b
8


has a solution.

Problem 4 Let
A =

[
−1/2 −

√
3/2√

3/2 −1/2

]
.

Let T : R2 → R2 be the linear transformation given by T (x) = Ax.

a) Give a geometric interpretation of the action of this linear transformation,
and calculate A2021.

b) Determine the eigenvalues of A and give a geometric interpretation of the
fact that they are not real numbers.
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Problem 5 Let V = C[0, 1] be the vector space of all continuous functions
f : [0, 1]→ R, and consider the subspace U = Sp{1, x}. Let 〈f, g〉 =

∫ 1
0 f(x)g(x)dx.

This gives an inner product for V = C[0, 1].

a) Determine an orthogonal basis for U .

b) Let h(x) = ex. Compute ProjU(h(x)).
Hint: ((x− 1)ex)′ = xex.

Problem 6 Find a real 2 × 2-matrix A that is associated with the system of
differential equations y′(t) = Ay(t) having solutions

e2t

[
1
0

]
og e2t

([
t
0

]
+
[
0
1

])
.

Problem 7

Let

B =

1 0 −2
0 2 −1
3 0 −4

 ,

Find an invertible 3× 3-matrix A satisfying

3A = A2 − AB

and explain why there does not exist an invertible 3× 3-matrix A such that

2A = A2 − AB.


