Problem 1 Complex numbers

a) Write the complex number

\[w = \left(-\frac{\sqrt{3}}{4} + \frac{i}{4} \right)^3 \]

in the form \(re^{i\theta} \). Find all complex numbers \(z \) such that \(z^3 = w \). Write the answer in the form \(a + ib \) where \(a \) and \(b \) are real numbers. Use exact values for \(a \) and \(b \).

b) Let \(z \) be an arbitrary complex number. A square \(OABC \) in the complex plane has one corner in the origin \(O \), and the corners are given counter clockwise. If the corner \(A \) is the number \(z \), what are the corners \(B \) and \(C \) expressed by \(z \)?
Problem 2 First order differential equations
a) Solve the initial value problem
\[y' + \frac{2}{x} y = \frac{\cos x}{x^2}, \quad y(\pi/2) = 0. \]
b) Use Euler's method with step size \(h = 0.5 \) to find approximates \(y_1 \approx y(2.5) \) and \(y_2 \approx y(3.0) \) to the solution \(y(x) \) of the initial value problem
\[y' = 1 + (x - y)^2, \quad y(2) = 1. \]

Problem 3 Second order differential equations
a) Find a general solution of the differential equation
\[y'' + y' - 2y = e^x + e^{2x}. \]
b) The differential equation
\[(1 - x^2)y'' + 2xy' - 2y = 0, \quad -1 < x < 1 \]
(*)
has two solutions of the form \(y_1 = x + a \) and \(y_2 = x^2 + b \) where \(a \) and \(b \) are constants. Find \(a \) and \(b \) by substitution. Explain why the solutions \(y_1 \) and \(y_2 \) are linearly independent, and give general solution of (*)
c) Find a particular solution of the differential equations
\[(1 - x^2)y'' + 2xy' - 2y = 6(1 - x^2)^2, \quad -1 < x < 1. \]

Problem 4 Multiple choice problem - to be answered without explanations.
a) Let \(A \) and \(B \) be \(2 \times 2 \) - matrices. If the determinant of \(A \) is 2 and the determinant of \(B \) is 3, what is the determinant of \(C = -2A^{-1}B^T \)?
A: 3 B: -3 C: 6 D: -6
b) For which \(n \) \(c \) are the vectors \(v_1 = (1, 3, -3) \), \(v_2 = (-2, 4, 1) \), \(v_3 = (-1, 1, c) \) linearly independent?
A: No \(c \) B: \(c = 1 \) C: \(c \neq 1 \) D: All \(c \)
Problem 5 \textit{Matrices and systems of linear equations}

Given the matrix
\[A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 2 & -2 & 3 \\ 2 & 4 & -3 & 5 \end{bmatrix}. \]

a) Solve the system of equations $Ax = 0$.

b) Find a basis for the row space $\text{Row}(A)$ and for the column space $\text{Col}(A)$.

c) Show that the vector $y = (1, 5, -3)$ lies in $\text{Col}(A)$. What other vectors does $\text{Col}(A)$ consist of? Give reason for your answer.

Problem 6 \textit{Eigenvalues and eigenvectors}

a) Find the eigenvalues of the matrix
\[A = \begin{bmatrix} 1 & 1 & -2 \\ 4 & 0 & 4 \\ 1 & -1 & 4 \end{bmatrix}. \]

Show that $v_1 = (-1, 3, 1)$ and $v_2 = (0, 2, 1)$ are eigenvalues of A by computing Av_1 and Av_2.

b) Find an eigenvector v_3 of A such that v_1, v_2 and v_3 are linearly independent. Write up an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

c) Let $y_1 = y_1(t)$, $y_2 = y_2(t)$ and $y_3 = y_3(t)$ be differentiable functions of t. Solve the system of differential equations
\begin{align*}
y'_1 &= y_1 + y_2 - 2y_3 \\
y'_2 &= 4y_1 + 4y_3 \\
y'_3 &= y_1 - y_2 + 4y_3
\end{align*}

with initial conditions $y_1(0) = 0$, $y_2(0) = 1$ and $y_3(0) = 2$.

Problem 7 \textit{Symmetric matrices}

Show in general that if all eigenvalues of a symmetric $n \times n$ matrix A are positive ($\lambda > 0$), then $x^T Ax > 0$ for all vectors $x \neq 0$ in \mathbb{R}^n.