Vi gjør likningen om ved å skrive \(z = re^{\theta} \), \(r \geq 0, 0 \leq \theta < 2\pi \):
\[
r^3 e^{3\theta} = 2r^2 e^{-2i\theta}
\]
og multipliserer med \(e^{2\theta} \) på begge sider av likningen,
\[
r^3 e^{5\theta} = 2r^2.
\]
Absoluttverdien av høyre side og absoluttverdien av venstre side må være like: \(r^3 = 2r^2 \).
Vi løser for \(r \) og får \(r = 2 \) eller \(r = 0 \). For \(r = 0 \) får vi løsningen \(z = 0 \). For \(r = 2 \) får vi
\[
e^{5\theta} = 1.
\]
Det vil si at \(\theta = \frac{2\pi k}{5} \) der \(k = 0, 1, 2, 3, 4 \). Løsningene er \(z = 0, z = 2, z = 2e^{\frac{2\pi}{5}i}, z = 2e^{\frac{4\pi}{5}i}, z = 2e^{\frac{6\pi}{5}i} \).

Den karakteristiske likningen til \(y'' + 9y = 0 \), \(\lambda^2 + 9 = 0 \), har røtter \(\lambda = \pm 3i \). Da er generell løsning \(y(t) = c_1 \cos 3t + c_2 \sin 3t \). Initialbetingelsene gir \(2 = y(\pi) = -c_1 \) og \(-3 = y'(\pi) = -3c_2 \). Det vil si \(c_1 = -2 \) og \(c_2 = 1 \). Løsningen er \(y(t) = -2 \cos 3t + \sin 3t \).

Den karakteristiske likningen til den homogene likningen \(y'' + 3y' - 10y = 0 \) er \(\lambda^2 + 3\lambda - 10 = 0 \). Denne har røtter \(\lambda_1 = 2 \) og \(\lambda_2 = -5 \). Hvis ubestemte koeffisienters metode har \(y'' + 3y' - 10y = 7xe^{2x} \) en partikulær løsning av formen \(y_p = (Ax^2 + Bx)e^{2x} \). Vi deriverer \(y_p \) to ganger: \(y_p' = (2Ax^2 + 2Bx + 2A + B)e^{2x} \), \(y_p'' = (4Ax^2 + 8Ax + 4Bx + 2A + 4B)e^{2x} \) og setter inn i differensiallikningen:
\[
(14Ax + 2A + 7B)e^{2x} = 7xe^{2x}.
\]
Det gir \(14A = 7 \) og \(2A + 7B = 0 \). Da har vi \(A = \frac{1}{2} \) og \(B = -\frac{1}{4} \). Partikulær løsning er \(y_p = \left(\frac{1}{2}x^2 - \frac{1}{4}x \right)e^{2x} \).

Vi finner først generell løsning av tilhørende homogen likning \(x^2y'' - 6y = 0 \) ved å substituere \(y = x^m \): \(x^2(m^2 - m)x^{m-2} - 6x^m = 0 \). Vi omformer og får \((m^2 - m - 6)x^m = 0 \). Siden \(x^m \neq 0 \), har vi \(m^2 - m - 6 = 0 \). Røttene til sistnevnte likning er \(m_1 = -2 \) og \(m_2 = 3 \). Det gir basis for løsningsmengden til den homogene likningen: \(y_1 = x^{-2}, y_2 = x^3 \). Den generelle løsningen av den tilhørende homogene likningen er derfor \(y_h = c_1x^{-2} + c_2x^3 \). Wronskideterminanten er
\[
W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} x^{-2} & x^3 \\ -2x^{-3} & 3x^2 \end{vmatrix} = 5.
\]
Vi gjør om likningen vi skal løse til standardform ved å dele på \(x^2 \) på begge sider: \(y'' - \left(\frac{6}{x^2} \right)y = x \), \(r(x) = x \). Metoden for variasjon av parametre gir partikulær løsning
\[
\tilde{y}_p = -y_1 \int \frac{y_2 x^2}{W} \, dx + y_2 \int \frac{y_1 x^2}{W} \, dx = -x^{-2} \int \frac{x^4}{5} \, dx + x^3 \int \frac{x^{-1} \ln |x|}{5} \, dx = -\frac{1}{2}x^3 + \frac{1}{5}x^3 \ln |x|.
\]
Vi sloyfer første ledd siden det er homogen løsning og sloyfer absoluttverditegn siden \(x > 0 \). Partikulær løsning er \(y_p = \frac{1}{5}x^3 \ln x \). Generell løsning er \(y = y_h + y_p = c_1x^{-2} + c_2x^3 + \frac{1}{5}x^3 \ln x \).
Vi regner ut determinanten til A:

$$\det(A) = \begin{vmatrix} a & 4 & 0 \\ 4 & a & 3 \\ 0 & 3 & a \end{vmatrix} = a \begin{vmatrix} a & 3 \\ 3 & a \end{vmatrix} - 4 \begin{vmatrix} 4 & 3 \\ 0 & a \end{vmatrix} = a(a^2 - 25) = a(a - 5)(a + 5).$$

Siden A er inverterbar hvis og bare hvis determinanten til A er forskjellig fra 0, så har vi at A er inverterbar hvis og bare hvis $a(a - 5)(a + 5) \neq 0$, dvs $a \neq 0, -5, 5$.

Vi setter opp koeffisientmatrisen for likningsystemet og utfører Gauss-Jordan eliminasjon:

$$A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ -4 & 1 & -9 & 5 \\ 2 & -2 & 6 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 13 & -13 & 13 \\ 0 & -8 & 8 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = E$$

Vi identifiserer de ledende variablene x_1 og x_2 ved å se på på E. Da har vi 2 frie variabler; x_3 og x_4. Vi innfører to parametre s, t og setter $x_3 = s, x_4 = t$. Ikkenullradene i E står for likningene $x_1 + 2x_3 - x_4 = 0$ og $x_2 - x_3 + x_4 = 0$. Vi løser og får $x_1 = -2x_3 + x_4 = -2s + t$ og $x_2 = s - t$. Finner så basis for løsningen: $s = 1, t = 0$ gir $\mathbf{v}_1 = (x_1, x_2, x_3, x_4) = (-2, 1, 1, 0)$. Løsningen på systemet blir derfor

$$s(-2, 1, 1, 0) + t(1, -1, 0, 1).$$

Vi bruker det vi fant i oppgave a). Siden $\text{Null}(A)$ er løsningsmengden av likningen $A\mathbf{x} = \mathbf{0}$, er basisen vi fant for løsningen av systemet i a) en basis for $\text{Null}(A)$:

$$\{ (-2, 1, 1, 0), (1, -1, 0, 1) \}.$$

Som basis for $\text{Row}(A)$ bruker vi radene forskjellig fra 0-radene i matrisen E:

$$\{ (1, 0, 2, -1), (0, 1, -1, 1) \}.$$

Som basis for $\text{Col}(A)$ bruker vi kolonnene i A som tilsvarer pivoteringskolonnene i echelon-matrisen E:

$$\{ (1, -4, 2), (3, 1, -2) \}.$$

Karakteristisk likning er

$$0 = |A - \lambda I| = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -2 - \lambda & 1 \\ -1 & -3 & 2 - \lambda \end{vmatrix} = -\lambda \begin{vmatrix} -2 - \lambda & 1 \\ -3 & 2 - \lambda \end{vmatrix} - (-1) \begin{vmatrix} -1 & 1 \\ -3 & 2 - \lambda \end{vmatrix} + (-1) \begin{vmatrix} -1 & 1 \\ -2 - \lambda & 1 \end{vmatrix} = -\lambda(\lambda^2 - 1).$$

Løser vi likningen $0 = -\lambda(\lambda^2 - 1)$, får vi egenverdiene $\lambda_1 = -1, \lambda_2 = 0$ og $\lambda_3 = 1$. Vi finner egenvektorene

$$\lambda_1 = -1: (A - (-1)I)\mathbf{x} = 0 \sim \begin{bmatrix} 1 & -1 & 1 \\ -1 & -1 & 1 \\ -1 & -3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Vi har en fri variabel $x_3 = s$. De ledende variablene blir da $x_2 = x_3 = s$ og $x_1 = 0$. En egenvektor tilhørende $\lambda_1 = -1$ er $\mathbf{v}_1 = (0, 1, 1)$. (Vi velger $s = 1$.)
\(\lambda_2 = 0: (A - 0 I)x = 0 \sim \begin{bmatrix} 0 & -1 & 1 \\ -1 & -2 & 1 \\ -1 & -3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}. \)

Vi har igjen en fri variabel \(x_3 = s \). De ledes variablene blir \(x_2 = x_3 = s \) og \(x_1 = -x_3 = -s \). En egenvektor tilhørende \(\lambda_2 = 0 \) er derfor \(v_2 = (-1, 1, 1) \) (Vi setter \(s = 1 \)).

\(\lambda_3 = 1: (A - I)x = 0 \sim \begin{bmatrix} -1 & -1 & 1 \\ -1 & -3 & 1 \\ -1 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \)

En fri variabel: \(x_3 = s \). De frie variablene blir \(x_2 = 0 \) og \(x_1 = x_3 = s \). En egenvektor tilhørende \(\lambda_3 = 1 \) er \(v_3 = (1, 0, 1) \) (Vi setter \(s = 1 \)).

Egenvektorene over er lineært uavhengige siden de tilhører forskjellige egenverdier av \(A \). Siden vi har 3 lineært uavhengige egenvektorer for \(A \) og \(A \) er en \(3 \times 3 \)-matrise, er \(A \) diagonaliserbar. Vi setter

\[
P = [v_1 \ v_2 \ v_3] = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{og} \quad D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Vi har \(A^{4115} = PD^{4115}P^{-1} \). Vi regner ut

\[
D^{4115} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{4115} = \begin{bmatrix} (-1)^{4115} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1^{4115} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D.
\]

Derfor er \(A^{4115} = PDP^{-1} = A \).

Vi ser at systemet av differensiallikninger er på formen \(\dot{x} = Ax \), der \(x(t) = (x_1(t), x_2(t), x_3(t)) \).

Vi har da at generell løsning er på formen

\[
x(t) = c_1 e^{-t}v_1 + c_2 v_2 + c_3 e^t v_3.
\]

Initialbetingelsen gir \(3, 2, 4) = x(0) = c_1 v_1 + c_2 v_2 + c_3 v_3 = Pc \) der \(c = (c_1, c_2, c_3) \). Vi løser likningen ved å omforme totalmatrisen til redusert echelonform:

\[
\begin{bmatrix} 0 & -1 & 1 & 3 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 1 & 3 \\ 0 & 0 & 1 & 5 \\ 1 & 0 & 2 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 1 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}.
\]

Vi har med andre ord \((c_1, c_2, c_3) = (3, -1, 2) \). Løsning av initialverdiproblemet er derfor

\[
x(t) = 3e^{-t}v_1 - v_2 + 2e^t v_3,
\]

det vil si

\[
x_1(t) = 1 + 2e^t \\
x_2(t) = 3e^{-t} - 1 \\
x_3(t) = 3e^{-t} - 1 + 2e^t.
\]
6a Vi observerer at \(v_2 \) og \(v_3 \) allerede er ortogonale. Vi setter derfor \(u_1 = v_2 = (2, 1, 0, -2) \) og \(u_2 = v_3 = (2, 0, -1, 2) \). Gram-Schmidt gir da den siste vektoren

\[
\tilde{u}_3 = v_1 - \frac{v_1 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_1 \cdot u_2}{u_2 \cdot u_2} u_2
\]

\[
= (1, 1, -1, 0) - \frac{2}{3}(2, 1, 0, -2) - \frac{2}{3}(2, 0, -1, 2) = (-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}, 0).
\]

Ortogonal basis for \(V = \text{Span}\{v_1, v_2, v_3\} \) er

\[
u_1 = (2, 1, 0, -2), \quad u_2 = (2, 0, -1, 2), \quad u_3 = (-1, 2, -2, 0).
\]

6b Vi benytter at basisen i a) er ortogonal: Ortogonalprosjeksjonen av \(w = (1, 4, 4, 2) \) ned på underrommet \(V \) er

\[
p = \frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \frac{w \cdot u_3}{u_3 \cdot u_3} u_3
\]

\[
= \frac{2}{3}(2, 1, 0, -2) + \frac{2}{3}(2, 0, -1, 2) - \frac{1}{3}(-1, 2, -2, 0) = (1, 0, 0, 0).
\]

7 Det inhomogene systemet \(A x = b \) har løsning hvis og bare hvis \(b \) er i \(\text{Col}(A) \). Siden \(A \) er symmetrisk, har vi at \(\text{Col}(A) = \text{Row}(A) \). Vi vet at \(\text{Row}(A) \) og \(\text{Null}(A) \) er ortogonale komplementer, og det betyr at \(\text{Col}(A) = \text{Null}(A)^\perp \) når \(A \) er symmetrisk.

Når \(A \) er symmetrisk, har følgelig \(A x = b \) løsning hvis og bare hvis \(b \) er i \(\text{Null}(A)^\perp \), dvs. hvis og bare hvis \(b \) er ortogonal til \(\text{Null}(A) \).