Examination paper for **TMA4110/TMA4115 Calculus 3**

Academic contact during examination: Tjerand Silde
Phone: 47301607

Examination date: 09. August 2019
Examination time (from–to): 09:00–13:00
Permitted examination support material: C: Specified printed and hand-written support material is allowed. A specific basic calculator is allowed.

Other information:
The exam consists of 10 subproblems. All subproblems are given equal weight. Give reasons for all answers. This year we specify that NO printed or handwritten support material is allowed.

Language: English
Number of pages: 2
Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig ☐ 2-sidig ☒
sort/hvit ☒ farger ☐
skal ha flervalgskjema ☐

Checked by:

__
Date Signature
Problem 1

a) Find all solutions of

\[z^5 = i \]

in \(\mathbb{C} \) and sketch them in the complex plane.

b) Let \(z \) og \(w \) be complex numbers. Show that

\[\frac{\bar{z}}{w} = \frac{\bar{z}}{\bar{w}}. \]

Problem 2

a) Let \(A \) be a real valued \(m \times n \)-matrix. Give the definition of the null space of \(A \). Show that the null space is a subspace of \(\mathbb{R}^n \).

Consider the matrix

\[
A = \begin{bmatrix}
2 & 4 & 0 \\
-5 & -4 & 6 \\
1 & -2 & -4
\end{bmatrix}.
\]

b) Is

\[
\begin{bmatrix}
1 \\
2 \\
-1
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
2 \\
-1 \\
1
\end{bmatrix}
\]

in the null space of \(A \)?

Find a basis for \(\text{Col}A \) and a basis for \(\text{Null}A \). Decide the dimension of these subspaces.

c) Find an orthogonal basis for \(\text{Col}A \). Compute the orthogonal projection of

\[
\begin{bmatrix}
3 \\
3 \\
9
\end{bmatrix}
\]
on \(\text{Col}A \).
Problem 3 A linear transform $T : \mathbb{R}^2 \to \mathbb{R}^2$ maps the square with corners located in

$$(0, 0), (1, 0), (0, 1) \text{ and } (1, 1)$$

to the parallelogram spanned by

$$\begin{bmatrix} 3 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$