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Problem 1

a) Find all solutions of
z5 = i

in C and sketch them in the complex plane.

b) Let z og w be complex numbers. Show that

z/w = z/w.

Problem 2

a) Let A be a real valued m × n-matrix. Give the definition of the null space
of A. Show that the null space is a subspace of Rn.

Consider the matrix

A =

 2 4 0
−5 −4 6
1 −2 −4

 .

b) Is  1
2
−1

 or

 2
−1
1


in the null space of A?
Find a basis for ColA and a basis for NullA. Decide the dimension of these
subspaces.

c) Find an orthogonal basis for ColA. Compute the orthogonal projection of3
3
9

 on ColA.



Page 2 of 2 TMA4110/TMA4115 Calculus 3

Problem 3 A linear transform T : R2 → R2 maps the square with corners
located in

(0, 0), (1, 0), (0, 1) and (1, 1)
to the parallelogram spanned by [

3
0

]
and

[
1
2

]
.
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Find the standard matrix [T ] of T and compute T

([
1
1

])
. Find ker T . Is T

surjective?

Problem 4 Find the general solution to the system of differential equations

y′ = Ay where A =
[
3 −4
2 −3

]
.

Problem 5 Find an explicit formula for An when n ≥ 0 and

A =
[

5 3
−6 −4

]
.

Problem 6 Give the definition of a diagonalizable square matrix. Show that a
diagonalizable 2×2-matrix with an eigenvalue of multiplicity two must be diagonal.

Problem 7 Let v, w be vectors in Rn, where v 6= 0. Define the projection
Pv(w) of w on v. Show that the projection Pv : Rn → Rn is a linear transforma-
tion. Show that Pv(w) and w− Pv(w) are orthogonal.


