Norwegian University of Science and Technology Department of Mathematical Sciences



**Problem 1** Let  $p(z) = z^3 + 27$ . Find all the roots of p(z), write the roots in standard form and sketch the roots in the complex plane.

**Problem 2** Consider the points (1, 5), (-1, 9) og (2, 12) in  $\mathbb{R}^2$ .

- a) Find a second order polynomial  $p(x) = ax^2 + bx + c$  that passes through these points.
- **b)** Use the method of least squares to find the first order polynomial q(x) = dx + e which best fits these points.

Problem 3 Let

$$A = \begin{bmatrix} 1 & 0 & 4 \\ -2 & 1 & -5 \\ 2 & -2 & a^2 - 2 \end{bmatrix}, \quad \text{where } a \in \mathbb{R}.$$

- **a**) For which real numbers a is the matrix A invertible?
- **b)** For which real numbers a does the equation

$$A\mathbf{x} = \begin{bmatrix} 1\\0\\a-4 \end{bmatrix}$$

have

- no solutions?
- exactly one solution?
- infinitely many solutions?

Page 2 of 4

**Problem 4** Let  $\mathcal{M}_2(\mathbb{R})$  be the vector space of real  $2 \times 2$ -matrices. Consider the following subset of  $\mathcal{M}_2(\mathbb{R})$ :

$$U = \{ A \in \mathcal{M}_2(\mathbb{R}) \mid A^T = -A \}.$$

In other words, U consists of all real  $2 \times 2$ -matrices A such that  $A^T = -A$ .

- a) Show that U is a subspace of  $\mathcal{M}_2(\mathbb{R})$ . Hint: It might be useful to know that  $(A+B)^T = A^T + B^T$  and  $(cA)^T = c \cdot A^T$ .
- **b)** Find a basis for U and determine the dimension of U.

**Problem 5** A linear transformation  $T : \mathbb{R}^3 \to \mathbb{R}^3$  is given by

$$T\left(\begin{bmatrix}0\\2\\1\end{bmatrix}\right) = \begin{bmatrix}2\\1\\3\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\2\\2\end{bmatrix}\right) = \begin{bmatrix}4\\4\\2\end{bmatrix}, \quad T\left(\begin{bmatrix}2\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\0\\2\end{bmatrix}.$$

Find the standard matrix A of the linear transformation T, and determine if T is injective and/or surjective.

## Problem 6

a) Show that

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \rangle = x_1 y_1 + 4x_2 y_2 + 9x_3 y_3$$

defines an inner product on  $\mathbb{R}^3$ .

**b**) Find an orthogonal basis for the subspace of  $\mathbb{R}^3$  spanned by the vectors

$$\left\{ \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \right\}$$

with respect to the inner product in a).

## Problem 7

Let

$$A = \begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} \text{ where } a, b \in \mathbb{R} \text{ and } a \neq b.$$

- a) Find an invertible matrix P and a diagonal matrix D such that  $A = PDP^{-1}$  and determine an expression for  $A^k$ , where k is an arbitrary positive integer.
- b) Find the general solution of the following system of differential equations

$$\mathbf{y}' = \begin{bmatrix} -2 & 5\\ 0 & 3 \end{bmatrix} \mathbf{y}$$

and then find the solution of the system which satisfies  $y_1(0) = 2$  and  $y_2(0) = -4$ .

Page 4 of 4

**Problem 8** Find the general solution of  $y'' + 5y' + 6y = e^{-2t}$  and solve for the initial conditions y(0) = y'(0) = 1.

**Problem 9** Let  $\mathcal{P}_2(\mathbb{R})$  be the vector space of polynomials of degree less than or equal to 2, and with real coefficients.

Let  $S = \{p_1(x), p_2(x), p_3(x)\}$  with

 $p_1(x) = x^2 + 1,$   $p_2(x) = 6x^2 + x + 2,$   $p_3(x) = 3x^2 + x.$ 

The set S forms a basis for  $\mathcal{P}_2(\mathbb{R})$  (you do not have to prove this). Find the coordinate vector of  $q(x) = x^2 + 2x + 3$  with respect to the basis S.

**Problem 10** Let V be an inner product space and let  $\mathbf{v}_1$  og  $\mathbf{v}_2$  be two vectors in V such that both  $\mathbf{v}_1 \neq \mathbf{0}$  and  $\mathbf{v}_2 \neq \mathbf{0}$ . Show that if  $\mathbf{v}_1$  and  $\mathbf{v}_2$  are orthogonal, then they are also linearly independent.