Pointwise convergence of Fourier series (informal note)
Let f(x) be a 27 periodic function where [T |f(x)|dx < oc.

Complex Fourier series of f(x):
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Partial sums:
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Complex Bessel inequality:
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Riemann-Lebesgue lemma: lim g o ck = 0.

Proof when [T f(x)2dx < oo: > |ck\2 < oo by Bessel = k| — 0 by Divergence test

THEOREM: If [™_|f(x)|dx < oo and f’(a) exists, then lim Sp, n(a) = f(a).
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Proof of THEOREM

1. Assume a = 0 and f(a) = f(0) = 0. Note that f’(0) exists by assuption and

f o
(x) is bounded near 0 and / [f(x)]dx < oo.

f(x) := ] -

2. Since f(x) = (e™ — 1)F(x), it follows that
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3. By Riemann-Lebesgue, limp m—oc Sm,n(0) = 0 = £(0).
4. Let a, f(a) be any pair of real numbers, and define
g(x) = f(x+a) — f(a).
Then obviously g(0) = 0, g’(0) exists, and SE, ,(x) = S,i,,"(x + a) — f(a). Hence, by 3.

|Sf n(a) — F(a)| = |S5, ,(0)] — 0as m, n — oo.
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NOTE: The proof is based on the following article,

P. R. Chernoff: Pointwise convergence of Fourier Series.
Amer. Math. Monthly 87 (1980), no. 5, 399-400.

Further results (for discontinuous functions) and a discussion can be found here.



