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SEC.13.2 Polar Form of Complex Numbers. Powers and Roots
[ lex Differentiation
bers and Functions. Comp
CHAP. 13 Complex Num

4. Law for conjugates. Verify (9) for 7, = —1] + 10i, COMPLEX ARITHMETIC
29 = —1 + 4i.

. Letz :‘2_{_5172 =3
Complex Conjugate Numbers 1 2

= iy 1 ined b
a complex number z = x + iy 18 defi y

Showing the details of
5. Pure imaginary number. Show that z = x + iy s

your work, find, in the form x + iy:
. _ pure imaginary if and only if 7 = —z, 8 @ ) 9. Re (z2) (R 2
te z of - 2122, (2122 . Re (z7), €z1)
The complex conjugate z 6. Multiplication. If the product of two complex numbers 10. Re (1/z3), 1 /Re (z2)
7=x— iy is zero, show that at least one factor must be zero. 1. ¢y — 2 )2/16 @1/4 - 2 /4)2
. - (21 £ 5 01 22
f addition and multiplication. Derive the
. . 5 2 sh 7. Laws o 12. z1/z5, z9/z
. ically by reflecting the point z in the real axis. Bigare: 323 shows following laws for complex numbers from the cor- . 24/22, 22/2: s
It is obtained geometrically by ez =5— 2i responding laws for real numbers. @1t 291 —29), 2§ - 23
this for z = 5+ 27 and its conjuga + =221 21,2129 = 797 (Commutative laws) 14. 21/2s, ‘(Zl/zz)
Z1 T 22 = 22 1, 2122 = 2221 15. 4 (z; + _
- 421+ 29)/(z1 — z9)
y =54 2i (@1t 22 t23= 21 + (22 + z3),
= 1y = a7 r
2 z=x+yy (Associative laws) 16-20 Let z = x + jy. Showing details, find, in terms
(z122)73 = 71(2923) of x and y:
, 5w iy=5-2i z1(z2 T 23) = 2122 + 7123 (Distributive law) 16. Im (1/2), Im (1/22) 17. Re 7% — (Re 22)2
X O+tz=z+0=g 18. Re [(1 + )16, 19. Re (z/2), Im (z/z)
Fig. 322. Complex conjugate numbers (D =(-2 +z=0, 2 1=z 20. Im (1/7%)

i its us to switch from complex
j is important because it permi W .
The complex con]uﬁztiitelilcsatiori Z=x2+ y2 (verify!). By addmon.and ii?tracsr?n’
to real. fndeed. b}/ 1n inyp We thus obtain for the real part x and the imaginary part y
z+z7=2x27—2= 2.

(not iy!) of z = x + iy the important formulas

3.2 Polar Form of Complex Numbers.
Powers and Roots

We gain further insight into the arithmetic
to the xy-coordinates in the com
r, 6 defined by

1 =
Z =y=—g— 7).
8) Rez=x:%(z+z), Imz=Yy 2i(Z

operations of complex numbers if, in addition
plex plane, we also employ the usual polar coordinates

g 3
Ieal x, ther Z l)y tlle de‘l 11t10n (P‘ Zs and converse y or

Py 5
I Z 1S Z ’ h Z l V‘V k[ WI

conjugates is easy, since We have

(z1 +z2) =71 T 22 (z1 — 22) =71 — 22,
® a)_o
(z1z9) = 2122 Z9 =g

EXAMPLE 3 Illustration of (8) and (9)
Letzy =4 +3iandzp =2 + 5i. Then by (8),

(1) X = rcos 0, y = ’,.Sin 0

We see that then 7 = x + iy takes the so-called polar form

2)

Z = r(cos 6 + isin 6).

r is called the absolute value or modulus of z and is denoted by [z].

Hence
3i + 3i

2i

= 3.

L[(4 +3i)— (4 —3D] =
2i

Imzy =

© 2l =r=Vx2+,2 = vz

Also, the multiplication formula in (9) is verified by

i) = —7 — 26i,
(z129) = (4 + 302 + 5) = (=7 + 26i) 7 i

Geometrically, |z is the distance of the point z from the origin (Fig. 323). Similarly,
21 = zg) is the distance between z1 and z5 (Fig. 324).

0 is called the argument of z and is denoted

7122 = (4 — 3D)(2 — 5i) = -7 — 26i.

by arg z. Thus 6 = arg z and (Fig. 323)

“PROBLEM SET 13-1

@)

Y
‘ tan 0 = =
the angle O

(z #0).
i iz and
2 B3 t=1 this by gr.aphmg z and lf ';11 i |
' Po'ers " ni.d Show— o ’.2 = ; ll 2 = 7i e z=1+iz=-1 1’ Jation in (7)- 1 Jrometrically, 6 is the directed angle from the positive x-axis to OP in Fig. 323. Here, as

i®=i---and 1/i i,1/i 1,1/i " 3. Division. Verify the calct ooty 0 i e e . = ‘

t t-, Multiplication by i is geometrically a ( o 5 Geo
2. Rotation. : et
i through /2 (90 y 26 — 6—2 n h
counterclockwise rotation alcu
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618 -— 5| INEQUALITIES AND E UALITY =z zZl = |2
k = 11in (16), then the n values of /1 can be 32; el ‘Q iy, Vet (Q6) . L 34. Re and Im. Prove [Re z| = lzl, |z = I,
- ding to k = ’ 32. Triangle inequality. Verify or 71 = i, 1 ity. Prove 2 .
If w denotes the value corresponding =g 35. Parallelogram equality. Prove and explain the name
written as 5 n—1 33. Triangle inequality. Prove (6). IZ1 + 22]2 + 'Zl - 22]2 =2(lz1 2.4 112[2).
1’ W, w, w .

i 0), then the
if wy is any nth root of an arbitrary complex number z (# 0)
1wy

More generally,
values of V/z in (15) are

13.3 Derivative. Analytic Function

Just as the study of calculus or real
neighborhood, function, limit, continuity,
analysis. Since the functions live in the ¢
difficult or different from those in real an
section where many of the concepts need

n—1
wiw

2 .
(17) W1, w1, wiw-, ?

analysis required concepts such as domain,
derivative, etc., so does the study of complex
omplex plane, the concepts are slightly more
alysis. This section can be seen as a reference
ed for the rest of Part D are introduced.

i i - ent of wy by 2k /n.
& to increasing the argum .
i e f unitz;/ and shows their usefulness.

because multiplying w1 : | !
Formula (17) motivates the introduction of roots

Circles and Disks. Half-Planes

The wunit circle |z| = 1 (Fig. 330) has already occurred in Sec. 13.2. Figure 331 shows a
general circle of radius p and center . Its equation is

=— PROBLEM SET 13-

20. TEAM PROJECT. Square Root. (a) Show that

R - f d raph h w = Z has t} (5] Values
p p g ) I) p al
epresent 1n polar rorm a a € con ex ne as

in Fie. 325. Do these problems very carefully be§ause polar oy — 7 {cos 9 + isin 5}
formszill be needed frequently. Show the details. ’ 0 4 y
; o —2 + 20 8 o
da b+ i —4 8 Wz:\/z—'{cos<§+77>+zsm<2+ﬂ>} 5
3.2, —2i :
: /5 — 10i I,
__M 6. — = _ ctical ol - -
5. 8 — 2i/3 *5\/5 + 5i (b) Obtain from (18) the often more practical for |
a > B P 1 7
g, 11 (19) Vz= =Vl +x)+(81gny)’m
7'1+%7Ti A=l : =1ify=0,signy= —1ify <0, an x
where signy = 1 if y =1 vers are taken SN . . ' . | ' ‘
PRINCIPAL ARGUMENT all square roots of positive num ithx = 08 Fig. 330. Unit circle Fig. 331.  Circle in the Fig. 332.  Annulus in the
he principal value of the argument and graph it positive sign. Hint: Use (10) in App. A3.1 wit - complex plane complex plane
Determine the princ £ —14i, —9 — 40i, an
g , Find the square roots o ’ th . . .
ayin F]g.~325- 10. =5, —5—1i, —5+i (1C)+ \/48i by both (18) and (19) and comment o1 because it is the set of all z whose distance |z — a| from the center a equals p. Accordingly,
-1 12. —7 — i work involved. r its interior (“open circular disk™) is given by |z — 4| < p, its interior plus the circle
1. V3xi 14. 1+01i, —1-0.1i (d) Do some further examples of your own ancég itself (“closed circular disk”) by |z — a| = p, and its exterior by |z — a| > p. As an
.20 . - i,
13. (1 =D f checking your results.
a method of ¢

example, sketch this for ¢ = 1 + ; and p =
inequalities.

Anopen circular disk |z — | < pis also called a neighborhood of ¢ or, more precisely,
a p-neighborhood of a. And a has infinitely many of them, one for each value of p (>0),
and a is a point of each of them, by definition!

In modern literature any set containing a p-neighborhood of ¢ is also called a neigh-
borhood of 4.

Figure 332 shows an open annulus (circular ring) p; < [z — a| < p2, which we shall
need later. This is the set of all z whose distance |

z = al from a is greater than p1 but
less than p,. Similarly, the closed annulus p; = |; — al = py includes the two circles,

2, to make sure that you understand these
15-18| CONVERSION TO x + iy

- -_27 ROOTS
o in the form x + iy: 21 2 lane.
ol el =T 0 " Ieplesem Tt j— (i)sin im Find and graph all roots in the complex p
16. 6 (cos 37 3

15. 4 (cos T —isin%) Vi1 2 Vo i
17. V8 (cos ¥ + isin D) 23. V343 24. V-4

5,
. = 3 27. -1
18. \/50 (cos 37 + i sin §m) 25. Vi 26. V1

00TS 28-31| EQUATIONS
R

i i * raph the solutions. Show details.
19. CAS PROJECT. R()‘OtS of IIJ:il:lty ?}:le(:eT:l:;:SGa;Zp?jr i;]vzezaid(i _p S e )
Write. @ progtm f(;lmi:lj; etlhe %mit circle. Apply the 29, Z'Z 4+ 14i=0
graphing thef?jslpwith n=23,,10. Then exFend w0, A 224 = 0, Usig Bhe, S0l
e t;)nf to one for arbitrary roots, using an idea . ;mo quadratic factors it real
:E;rprtﬁirend of the text, and apply the program to 62 16 =0
examples of your choice.

ions, factol
Coefﬁclen ¢

Half-Planes, By the (open) upper half-plane we mean the set of all points z = x + jy

Sl_lCh that y > 0, Similarly, the condition ¥ < 0 defines the lower half-plane, x > 0 the
right half-plane, and x < 0 the left half-plane.




e R N REEEENNNEe_———————

) EC. 134 Cauchy-Riemann Equations. Laplace’s Equation .
lex Numbers and Functions. Complex Differentiation S y a ; .
CHAP.13  Complex Nu
B} (d) Continuity. If f(z) is differentiable at zo, show that 25, WRITING PROJECT. Comparison with Calculus.
| ’ (2) is continuous at z,,.
ials, Rational Functions !
EXAMPLE 5 Polynomials,

Summarize the second part of this section beginning with

- are analytic in the entire complex plane, and so are polynomials, (e) Differentiability. Show that f(z) = Re z = xis not Complex Function, and indicatt.z what is conceptually
differentiable at any z. Can you find other such functions? analogous to calculus and what is not.
, o (f) Differentiability. Show that f(z) = |z|2 is dif-

f@) =co+crzteez” Tz ferentiable only at 7 =

2
The nonnegative integer powers 1, z, 2%,
that is, functions of the form

0; hence it is nowhere analytic.
g lex constants.
where cg, - - -, ¢ are cOmMp

The quotient of two polynomials g(z) and h(z),

{¢4)

=5 13.4 Cauchy-Riemann Equations.
0= e we asame hat common Laplace’s Equation

As we saw in the last section, to do complex analysis (i.e.,
any complex function, we require that function to be an
differentiable in that domain.

The Cauchy-Riemann equations are
and one of the pillars on which complex
for the analyticity of a complex function

called a rational function T'his 18 @ alytic except at the po 1ts where £
a ¥ (
1S )

.
S 1 § S pters.

ctors 8 y

Many further analytic functions w 11 be conside ed the next sections a d chaptel

“calculus in the complex”) on
alytic on some domain that is

discussed in this section extend familiar con.cepts of calcuflus. Mlost
The concePtS e t of an analytic function, the exclusive conc?ern 0 Con.lp.ex
importgnt is the concep simple functions are not analytic, the large varlety of remalnxgg
?naly?ls. Alti};;)uygi};lrcrlla; ymost beautiful branch of mathematics that is very useful in
unctions w

the most important equations in this chapter
analysis rests. They provide a criterion (a test)

engineering and physics.

w = f(z) = u(x, y) + w(x, y).

= PROBLEM SET 1

Roughly, fis analytic in a domain D if and only if the first partial derivatives of uand v
satisfy the two Cauchy-Riemann equations®

- z) = 1 igure, and the curves

OF CTICAL INTEREST Im f(z) = const 1n the SarTle f =
1-8 REGIONS PRACTI 1 [f(Z)(| = const in another figure, where (@) f(x) =23 ( ) N u
Determine and sketch or graph the sets in the complex plane ) 1 1/ © f@ .

y = TUg

given by Continuity. Find out, and give reason, whethef ever){where in D; here u,, = du/dx and Uy = du/dy (and similarly for v) are the usual
—90il =1 14-17 o o e # 0 th notations for partial derivatives. The precise formulation of this statement is given in
1. [z+ 1 4 . at z = 0if £(0) = 0 and for z p p g
f(z) is continuous at z = Theorems 1 and 2
2.0< |z <1 L . .
. function f is equal to:
3.3<|z-1+2l<m 14, (e BT 15. |z12Im (1/2) Example: f(z) = 7% = x2 — )2 4+ 2ixy is analytic for all 7 (see Example 3 in Sec. 13.3),
4, —m<Imz<Tm : s 2)/|Z|2 17. (Re 2)/(1 — |zl) and u = x2% — y2 and v = 2xy satisfy (1), namely, u, = 2x = Uy as well as u, =
5. larg 2| <% 16. (Im z%)/1z " —2y = —v,. More examples will follow.
. . the derivali
6. Re(l/ <1 18-23| Differentiation. Find the value o
7.Rez = —1 of :
, 3 o = 5 —Ri i
Bl + = a4 Sets in the Complex Plane. 18, (z — i)/(z + i) ati 19. (z — 2i)°at =3 Cauchy—Riemann Equations
e . !
9. WRITING PROJECT. Sets in

. N ias . Explain the restit
Write a report by formulating the corresponding 29 (1,57 + 2i)/(3iz — 4) at any z. Exp
e 2 :
porrltions of the text in your own words and illustrating 21. i(1 — 2" at0 3/ i)2at =i
3 . ! Z =
them with examples of your own. 22. (i + 32%)% at 2 23. 2

- tinuity, D€ :
MPLEX FUNCTIONS AND THEIR DERIVATIVES 24. TEAM PROJECT. Limit, Con
co

i i t to
(a) Limit. Prove that (1) is equivalen
relations

. (Z) =
lim Ref() = Rel,  lim Im/f
e )

Let f(z) = u(x, y) + iv(x, y) be defined and continuous in some neighborhood of a
point z = x + iy and differentiable at 7 itself. Then, at ¢

hat point, the first-order
partial derivatives of u and v exist and satisfy the Cauchy—Riemann equations (1).
Hence, if f(z) is analytic in a domain D, those partial derivatives exist and satisfy
(1) at all points of D.

10-12| Function Values. Find Re £, and Im f and their
values at the given point z.

10. f(z) = 522 — 12z + 3 + 2iat4 — 3i

11. f(z) = 1/(0 + ) atl — i

, =@E@—1D/@+ Dat2i oty T o
12 Jgis PROJECT. Graphing Functions. Find and graph i:})mh e 1t £ 1
. Re f, Im f, and |f] as surfaces over the z-plane. Also in

n ©, . == )
’ = how that lim f(z,,) = f(@
graph the two families of curves Re f(z) = const and show Jim

_—

“The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5)
BERNHARD RIEMANN (1826-1866) and KARL WEIERSTRASS (1815-1

founders of complex analysis. Riemann received his Ph.D. (in 1851) under G
he also taught until he died, wher

i i how that
(b) Limit. If 21520 f(x) exists, sh
unique.

and the German mathematicians
897; see also Sec. 15.5) are the
auss (Sec. 5.4) at Géttingen, where
the concept of the integral as it is
d made important contributions to differential equations, number theory, and
developed the so-called Riemannian geometry, which is the mathematical
f relativity; see Ref. [GenRef9] in App. 1.

nt
.- are complex ]
continuot

Mathematica] physics. He also
foundation of Einstein’s theory o




