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PROOF Taking the absolute value in

SEC. 141 Line Integral in the Complex Plane

tion
CHAP.14  Complex Integrati EXAMPLE 8  Estimation of an Integral

fzz dz,
¢ c

1

Fig. 344. Path in
Example 8

Fig. 343. Paths in Example 7

b) We now have .
: =1 fecO)=xn=t 0=t

Cuzn =1
l =i, S =xn=1

Caa(n =1+t

O0O=r=2).

= PROBLEM SET 14 .7

FIND THE PATH and sketch it
=0+, 1sr= 6)
O=3+i+U-iy, Osr=3
) =r+4% O0=r=1)
W=r+Ud-0% (-1=,= 1)

) =2-2+V57" =,< 27)
=1+i+e ™ (05,<9
() =142 0550

Using (6) we calculate

IRezdz= J S J fesdes

1 2 1 2
[!dl+ [ |*idl=5+ 1.
. 0 ’

c G

Note that this result differs from the result in (a).

e A o

Bounds for Integrals. ML-Inequality

mplex line integrals.
1l be a frequent need for estimating the absolute value of comp
There will be a

8.xn=5"" == 7/2)
The basic formula is 9. ) =t+i(l =3, (—2=, =2
. i 0.z(1)=2cost+isin1, O=r=2m)
(ML-inequality)
f(z) dz| = ML
13) L [11-20] FIND A PARAMETRIC REPRESENTATION

d sketch the path.
11. Segment from (-1, 2) to (1,4)
2. From (0, 0)to (2, 1) along the axes
1. Upper half of |z — 4 + ;| = 4 from (5, =Dito(=3,~1)
4. Unit circle, clockwise
AR 2oy e branch through (0, 2)
6. Ellipse 42 + 9y2 = 36, counterclockwise
e+ q - ib| = r, clockwise

m=1 Fig. B 1
A > d zp, (see FIg. - == 1/x from (1, 1) 1o (5, 1)
dpoints are 2y, anc ds w / ’ '5
i th of the chord whose,en en line of chor !
Now |Az,y/| is the leng

brok . . Paraholy y=1- %_‘_2, (—2=r= 2
i ts the length L* of .the. . X
Hence the sum on the right l'ipl;)selnf n approaches infinity in such a wayfttt;]ae e el . =
et A | K zylb'cgach zgaro then L* approaches the: len%;l'; ?;low&
|Atm|fa n":' thuf)fl ﬁ\zen;e:g})) of a curve. From this the inequality (
the definition

s the lel th of C and a constan such that = M ever yWheIe on C.
Li ng

. . : 132
(2) and applying the generalized inequality (6*) in Sec

we obtain

= S fEmllAznl = Mmzzlmzml.

m=1

ISl = | 2 f&m) Azm

INTEGRATION

1LE by the first method or state why it does not apply

te value 0 the second method. Show the details,

() 1 absolu

We cannot see from 13) how close to the bound ML the actual

integral is but this Wl(ll be no hal’ldlCap m applymg (13) For the time belllg we €
3:4 4

i le.
the practical use of (13) by a simple example

|
Rezdz, the shortest path from | + ; o5+ 5;

The absolute value of the integral is l—%
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1 Find an upper bound for the absolute value of the integral

C the straight-line segment from O to | + j, Fig. 344,

Solution. 1 = /3 ang rol =12 s20nc gives by (13)

fzz dz
C

+3i=%v3= 0.9428 (see Example 1), |

=2V3 = 28284,

Summary on Integration. Line integrals of f(2) can always be evaluated by (10), using
a representation (1) of the path of integration. If Sf(@) is analytic, indefinite integration by
(9) as in calculus will be simpler (proof in the next section).

22, fRe:dz, C the parabola y=1+ %(x - 1?2 from
c
l+it03+3

23, j €® dz, C the shortest path from 77/2i to 7ri
c

24. f c0s 2zdz, C the semicircle lel =mx20 from
c
—i to 7ri

25, j' zexp (zz) dz, C from | along the axes to ;
(o

26. [ (z + z'l) dz, C the unit circle, counterclockwise
c

27, f sec?z dz, any path from /4 to Ti/4
¢

5
28. f (m -~ ﬁ) dz, Cthe circle |z — 2i| = 4,
C

clockwise

29, f Imz2dz counterclockwise around the triangle with
c
vertices 0, |,

30. f Re 2% dz clockwise around the boundary of the square
c

with vertices 0, i, ] + il

31. CASPROJECT. Integration. Write programs for the
two integration methods, Apply them to problems of
your choice. Could you make them into a joint program
that also decides which of the two methods to use in a
given case?
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2) i tant in D
'z) = 0 in D; hence F(z) — G(2) is cons t
o OleTat is, two indefinite integrals of f(z) can

n use any
t in (9) of Sec. 14.1, so that we ca 2]

. . F'(Z) s
Iso, if G'(z) = f@), Ehen
ge?Team Project 30 in Problem Set 13.4).

i t. The latter drops ou
differ only by a constan . N
indefinite integral of f(z). This proves Theorem

Cauchy’s Integral Theorem
for M:ltiply Connected Domains

y pp! ply ectel ma . e first e: lain this for a
uchy’s theorem a 1es to multi ly connect d do 1ns. Wi st €Xp!
Cal T

y ith outer boulldaly curve C] C2 (

doubl cOllﬂected domain D wi and inner Fi 353
f(~) S naly 1C 1n any 1n D ary 3

a function 1S a tic 1 domal D* that contains and its bound curves, we

claim that

§ f@dz = § f(2) dz
(6) i .

(Fig. 353)

i rdless of whether
Is being taken counterclockwise (or both clockwise, and regai
both integral ;
or not the full interior of Cg belongs to D¥).

Fig. 353. Pathsin (5)

i d
54) we cut D into two simply connecfed domal;ns ,[e),ln at;lw
ndaries f(z) is analytic. By Cauchy’s integral theo!

in Fig. 354) is
i of the arrows in Fig. 3
D e Sensehus their sum. In this sum the

rate over them in both

C, and Cy (Fig. 3
F By two cuts Cy an
FrROO DZ in which and on whose bou

integral over the entire boundary o D (lken e et

d so is the integral over the boundary s
el ov C,; and C, cancel because we Integ e
d we are left with the integrals over C; (coun

i the cuts Cy
integrals over . )
by reversing the integration over Cy (t

irecti isi key—an
rections—this is the : :
g.:ld Cy (clockwise; see Fig. 354); hence

counterclockwise) we have

%fdz—ifdz=0
C

1 2

and (6) follows.
me. Thus, for a triply co.nnect ed
ntegrals as before, the integra
lockwise) and Ca:

C
the integrals over’
matn

For domains of higher connectivity the id.ea remair;s ;g?nsgai
iy e use three cuts Cy, Co, C3 (Flg. 355). A

e d the sum of the integrals over Cy

g gral over Cy equals the sum of

over the cuts cance
lockwise. Similarly for quadruply connected do

(clockwise) is zero. Hence the inte
and Cs, all three now taken counterc

and so on.

SEC. 142 Cauchy’s Integral Theorem

Fig. 354. Doubly connected domain

PROBLEM SET 14.2

j.’u_

COMMENTS ON TEXT AND EXAMPLES

1. Cauchy’s Integral Theorem. Verify Theorem 1 for
the integral of z2 over the boundary of the square with
vertices *1 *+ . Hint. Use deformation.

2. For what contours C will jt follow from Theorem 1 that

dz _ exp (1/22) B
@ [0 o [ -0

3. Deformation principle. Can we conclude from
Example 4 that the integral is also zero over the contour
in Prob. 1?

4. If the integral of a function over the unit circle equals
2 and over the circle of radius 3 equals 6, can the
function be analytic everywhere in the annulus
1<l <32

5. Connectedness. What is the connectedness of the
domain in which (cos zz)/(z‘1 + 1) is analytic?

6. Path independence. Verify Theorem 2 for the integral
of & from 0 to 1 + { (a) over the shortest path and
(b) over the x-axis to 1 and then straight up to 1 + .

7. Deformation. Can we conclude in Example 2 that
the integral of 1/(z% + 4) over (a) |7 — 2| =2 and
®) |z = 2] = 3 is zero?

8. TEAM EXPERIMENT. Cauchy’s Integral Theorem.,

(a) Main Aspects. Each of the problems in Examples
1-5 explains a basic fact in connection with Cauchy’s
theorem. Find five examples of your own, more
complicated ones if possible, each illustrating one of
those facts,

(b) Partial fractions. Write S(2) in terms of partial
fractions and integrate it counterclockwise over the unit
circle, where

2z + 3i N 241
11 ) = 1
2+1 e

(©) Deformation of path. Review (c) and (d) of Team
Project 34, Sec. 14.1, in the light of the principle of defor-
“Mation of path. Then consider another family of paths

() fz) =
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™

(o}

G
Fig. 355. Triply connected domain

with common endpoints, say, z(r) =t + ia(t — 12),
O0=r=1,aareal constant, and experiment with the
integration of analytic and nonanalytic functions of
your choice over these paths (e.g., z, Im Z, 22, Re zz,
Im 22, etc.).

CAUCHY’S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle.
Indicate whether Cauchy’s integral theorem applies. Show
the details.

9. fz) = exp (12)
1L f@z) = 1/(4z — 1)
B f@) = 1/c* - 1.2
15. f(@) =Rez
17. fz) = 1/])?
19. f(z) = 23 cot ¢

FURTHER CONTOUR INTEGRALS

Evaluate the integral. Does Cauchy’s theorem apply? Show
details.

10. f(2) = tan 2

12. f(z) = 78

14. f(z) = 1/7

16. f(2) = 1/(mrz ~ 1)
18. f(z) = 1/(5z ~ 1)

20. f Ln(l - 2) dz, C the boundary of the parallelogram
c

with vertices i, (1 + ).

dz
21. f -, Cthe circle |z] = 71 counterclockwise.,
cz— 2

y1
22. f Rezdz, C:
c (5
-1 TEE
2z -1 ¥
23 - —dz, C c
ci —z

Use partial fractions.
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cos z
24, § dz e Y 27. jg —z—dz, C consists of |z] = 1 counterclockwise
o c

and |z| = 3 clockwise.

tan 5z
28. { —4—dz, C the boundary of the square with
c 162" — 81

vertices * 1, =i clockwise.

Use partial fractions.
sin z
29. f dz, C:lz—4—2il =65
c

z
25. f %dz, C consists of |z| = 2 counterclockwise and 7 + 4iz
c
4 . 22+ 2+ 4
lz] = 1 clockwise. 30. § —— 4 G |z = 2| = 4 clockwise. Use
c " t+4z
26. % coth 3z dz, C the circle |z — 4aril = 1 clockwise. partial fractions.
c

14.3 Cauchy’s Integral Formula

Cauchy’s integral theorem leads to Cauchy’s integral formula. This formula is useful for
evaluating integrals as shown in this section. It has other important roles, such as in proving
the surprising fact that analytic functions have derivatives of all orders, as shown in the
next section, and in showing that all analytic functions have a Taylor series representation

(to be seen in Sec. 15.4).

THEOREM-1 Cauchy’s Integral Formula
Let f(z) be analytic in a simply connected domain D. Then for any point zg in D
and any simple closed path C in D that encloses 7o (Fig. 356),

1) % zf—(Z)zo dz = 2mif(zo) (Cauchy’s integral formula)
c

the integration being taken counterclockwise. Alternatively (for representing fzo)
by a contour integral, divide (1) by 21ri), :

a1 fzo) = 571; % zf——(Z)z—o dz (Cauchy’s integral formula).
c

PROOF By addition and subtraction, f(z) = f(zo) + [f@) — f(z0)). Inserting this into (1) on
left and taking the constant factor f(zo) out from under the integral sign, we have |

f@ dz f@ — fzo)
2) { z_z()dz—f(zo) z—zo+ 72 dz.
c c
The first term on the right equals f(zo) * 27, which follows from Example 6 in S :
with m = —1. If we can show that the second integral on the right is zero, then it

prove the theorem. Indeed, we can. The integrand of the second integral is analytic,

SEC.143 _ Cauchy's Integral Formula

=il vetamo M. 66

z:: zto. Her;(l::e, by (6) in Sec. 14.2, we can replace C b

nter zo (Fig. 357), without alterin i

; » W g the value of the int i i ic, it i

continuous (Team Project 24, Sec. 13.3). Hence, an lenig;)all;ef:lzcegi{/(:r)l lswinalymi:i’ 1:1 P
X can find a

8 > O'such that | f(z) — f(z :
0)| < € for all z in the di — .
p of K smaller than &, we thus have the inequaliet;ri sk |2 = 20l < 8. Choosing the radivs

y a small circle X of radius p and

Fig. 356. Cauchy's integral formula

Fig. 357.  Proof of Cauchy's integral formula

f@) = fzo)
——|<

27~ 20

£
p
at each poi i
each point of K. The length of K is 27rp. Hence, by the ML-inequality in Sec. 14.1

ECRIE

Z— 20 dz

€
< =27p =
" P TP = 27e.

Since € (> 0) can be chosen arbitrari
itrarily small, i i i
have fo valce Sob e drbife l); pmvedlt follows that the last integral in (2) must
. |

EXAMPLE-1 Cauchy’s Integral Formula

ez
£ Z_—zdz = 2wie* " = 2mie? = 46.4268i
for any contour enclosing zo =

2 (since € is enti
(by Cauchy’s integral theorem). Is entire), and zero for any contour for which zo = 2 lies outside

n
"MPLE=2 Cauchy’s Integral Formula
3 _ 1.3
z 6 32" -3
dz = f dz
2z—i e %i
=2mi[3® ~ 3)lz=i2
2T i
g o7 (z0 = }iinsidec). W

LE 3 Integration Around Different Contours
Integrate

241 2+1

21 @+hez-1

8@@) =

counterclockwise around each of the four circles in Fig. 358



