SEC. 143  Cauchy's Integral Formula
CHAP. 14 Complex Integration

Solution. 15 nOl dllﬂlyt at — . re p 0 watch for e consider each
8 ) t ic at —1 and 1. These are the points we have t tch for. W id
<

cir(cl;» S"l?:lmm:cl{c; |z = 1] = 1 encloses the point zo = | where g(z) is not analytic. Hence in (1) we have to
a € C T =

where the outer integral (over C
indicated in Fig. 359,

write

:2+] 22+] 1

g(z)=1241= s+l oz— 1]
thus
2+1
fay= z+1
and (1) gives

== PROBLEM SET 14.3

2
2 2+ 1 >
“+1 . =17
= - i =2 = 2mI.
§ 21 @ = 2mif() _m[ + 1 ]zl
c

z

CONTOUR INTEGRATION

Integrate z2/ (2 ~ 1) by Cauchy’s formula counterclockwise
around the circle.

Llz+1] =32
3 z+il =141

(b) gives the same as (a) by the principle of deformation of path. .
I . v
(¢) The function g(z) is as before, but f(z) changes because we must take 2o = —1 (instead of 1). This g
a factor 2 — zg = z + 1 in (1). Hence we must write

2 lz~1~il=m)p
4. jz+5-5i=7

o) = 2+l . Integrate the given function around the unit circle.
gz 4 5. (cos 2z)/4z 6. e%/(rz — i)
7. 22/(4z — i) 8. (zsinz)/(2z — 1)
thus 2, 9. CAS EXPERIMENT. Experiment to find out to what
o= =

extent your CAS can do contour integration. For this,
use (a) the second method in Sec. 14.] and (b) Cauchy’s
integral formula.

. TEAM PROJECT. Cauchy’s Integral Theorem.
Gain additional insight into the proof of Cauchy’s
integral theorem by producing (2) with a contour

enclosing z (as in Fig. 356) and taking the limit as in
the text. Choose

3 .
=6 sin z
@ § —d; (b f— —dz,
C (o]

z—3i z— 5T

Compare this for a minute with the previous expression and then go on:

2
2+1 .r +l] = —ami
= = if(—1) = 2mi i
i 5 lzL 2mif(—1) L 7

(d) gives 0. Why?

and (c) another example of your choice.

FURTHER CONTOUR INTEGRALS

integrate counterclockwise or as indicated. Show the
details,

dz
] ‘£Z2+4, Cdax?+ (y—-22 =4

Fig. 358. Example 3

Z .
. Y if fz dz, C the circle with center — | and
Multiply connected domains can be handled as in Sec. 14;12i)FOCr‘ ms:;m(ffe’(;:i gf @ +4z+3
: : in bounde 1 and ¢2 E
analytic on Cy and Cy and in the ring-shaped domain bou y -
is any point in that domain, then —d;, Clz—~1]=
and zo yp 2-12
Z
1 [ f@ L}Az)_dz, | = Cld = os
(3) f(ZO) = 51; + —— dz + i sz - 20 5 26 — 2z 2, . L,I .
Cy

B e — v

663

1) is taken counterclockwise and the inner clockwise, as

o
@ :

<

Fig. 359. Formula (3)

, f
z— i dz, C the boundary of the square

with vertices +2, +2, +4;.

15, § cosh (z2 = i)
c

tan z
16. jg =7 dz, C the boundary of the triangle with
z—
c

vertices 0 and *1 + 2;.

Ln(z+ 1
17. %%dz, Clz—il=14
c &+ 1

sin z
18. f —= L—g.—dz, C consists of the boundaries of the
c 4z — 8z

squares with vertices +3, +3; counterclockwise and
*1, *i clockwise (see figure).

~3i

Problem 18

exp z2
19. jg 5 -dz C consists of |z| =2 counter- w
cz(z—1-1)
clockwise and |z| = 1 clockwise.

20. Show that f @@=z Yz - 22 ldz = 0 for a simple
c

closed path C enclosing z; and z,, which are
arbitrary.



CHAP. 14 Complex Integration

continuation and completion of this proof, because it implies that (1”) can be proved Ey
a similar argument, with f replaced by f ' and that the general formula (1) follows by

SEC.14.4 Derivatives of Analytic Functions

667

PROOF By assumption, |f(z)| is bounded, say, |f(z)| < K for all z. Using (2), we see that

|f'zo)l < K/r. Since f(z) is entire, this holds for every r, so that we can take r as large

! [ ] as we please and conclude that f'(zg) = 0. Since zg is arbitrary, f'(z) = u, + iv, = 0 for

induction. all z (see (4) in Sec. 13.4), hence 1, = v, = 0, and ity = vy = 0 by the Cauchy-Riemann

equations. Thus u = const, v = const, and f = u + iv = const for all z. This completes
Applications of Theorem 1 the proof, -’
Another very interesting consequence of Theorem 1 is

EXAMPLE 1 Evaluation of Line Integrals

From (1), for any contour enclosing the point 7 (counterclockwise)

- THEOREM 3 Morera’s” Theorem (Converse of Cauchy’s Integral Theorem)
i; - C:’S;i)z dz = 2mi(cos )’ i ~2misin i = 2 sinh . If f(2) is continuous in a simply connected domain D and if
c <
" . int —i btain by counterclockwise integration
EXAMPLE 2 From (1"), for any contour enclosing the point —i we obtain by 3) % f@dz=0
Ealg il iz ~ 32+ 6)" = 7i[12:% = 6], = —187i. u ¢
o Gt - Jor every closed path in D, then f(z) is analytic in D
EXAMPLE 3 By (1'), for any contour for which 1 lies inside and +2i lie outside (counterclockwise), Y ‘
z ? !
ﬂ£ ——1):(—2+—4)d: = z'm'(jzeTZ) ' . PROOF In Sec. 14.2 we showed that if f(z) is analytic in a simply connected domain D, then
c - D < =
EEE 4 -2 _6em . os0i ] z
THTEL S e F@) = J F*) dz*

%0

Cauchy’s Inequality. Liouville’s and Morera’s Theorems

We develop other general results about analytic functions, further showing the versatility
of Cauchy’s integral theorem.

is analytic in D and F'(z) = f(z). In the proof we used only the continuity of f(z) and the
property that its integral around every closed path in D is zero; from these assumptions
we concluded that F(2) is analytic. By Theorem 1, the derivative of F (2) is analytic, that
is, f(z) is analytic in D, and Morera’s theorem is proved. |

Cauchy’s Inequality. Theorem 1 yields a basic inequality that l.ms many applicaﬁons&
To get it, all we have to do is to choose for C in (1) a circle of rad1u§ rand celnter Zg an
apply the ML-inequality (Sec. 14.1); with |f(2)| = M on C we obtain from (1)

This completes Chapter 14.

PROBLEM SET 14.4
n! 1

f@ RNV
(o]

1!

(n) =_'_
|F™(zo)l o

CONTOUR INTEGRATION. UNIT CIRCLE 8-19| INTEGRATION. DIFFERENT CONTOURS

Integrate counterclockwise around the unit circle.

Integrate. Show the details. Hint. Begin by sketching the
This gives Cauchy’s inequality

sin 2z " % Pl y contour. Why?
a % 2 - 18~ 2 +sing
n'M : c@-1) 8. § ——5~dz, C the boundary of the square with
| (n)( )| <l = z c (z—i)3
)] (2o Ak Gat,, 10 4{ e”cos z Dl bl
w4 n=1,2,-- 3 3 < vertices 2, *2; counterclockwise.
< c (z — m/4)
. . . . f tan me . i
To gain a first impression of the importance of this I;ne?:}aht}filletsl;: g::;velrﬂ sinh 2z . g f dz 9, % Z dz, Ctheellipse 16x2 + y2 = | clockwise.
. . M M ouvl s . ol e dz . —_—— [o]
theorem on entire functions (definition in Sec. 13.5). (For Li - Lt ¢ (2 2%z - i/2)? B
cos z 10. {3 —————dz, C consists of |z| =3 counter-
itz n=0,1,- czz—1-1)
THEOREM 2 Liouville’s Theorem

lex PIEC clockwise and |z| = 1 clockwise.
If an entire function is bounded in absolute value in the whole complex ptane,
this function must be a constant.

2GIACINTO MORERA (1856-1909), Italian mathematician who worked in Genoa and Turin.
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11.
S0 (2 )
12. $ R )., iz, C:z— 3i| = 2 clockwise. 19.
Jehz (T ai1)s
. 20.
Lnz i
13, ﬁ? SelE i |z = 3| = 2 counterclockwise.
> 2
(T 4
[Eni(zsE8) .
14. e dz, C the boundary of the square
e (& = 21 ar D)
with vertices 1.5, =1.5i, counterclockwise.
cosh 4z A
15. &}) ————dz, C consists of |z| = 6 counterclock-
> 4)3
Jc(z—4)
wise and |z — 3| = 2 clockwise.
L)4:
16. ff) == - dz, C consists of |z — i| =3 counter-
e = 20)
clockwise and |z| = 1 clockwise.
[ @7 g 3 i
17. ‘,gd:. C consists of |z| = 5 counterclock-
cl@=1)]
wise and [z — 3| = % clockwise.
1. What is a parametric representation of a curve? What 12
is its advantage?
2. What did we assume about paths of integration z = 2(1)? 13
What is z = dz/dt geometrically?
3. State the definition of a complex line integral from 14
memory. :
4. Can you remember the relationship between complex 15.
and real line integrals discussed in this chapter?
5. How can you evaluate a line integral of an analytic  16.
function? Of an arbitrary continous complex function? 17.
6. What value do you get by counterclockwise integration
of 1/z around the unit circle? You should remember
this. It is basic.
74 .\Vthh Lhc‘eorem ip this c':hapter do you regard as most
important? State it precisely from memory. =
8. thl 115 mdepend@ce of path? Its importance? State a
basic Fleorem on independence of path in complex. 19.
9. What is deformation of path? Give a typical example, 2
10. 2

11.

CHAP. 14 Complex Integration

C: |z — i| = 2 counterclockwise.

Don’t confuse Cauchy’s integral theorem (also known
as Cauchy-Goursat theorem) and Cauchy’s integra]
formula. State both. How are they related? .

What is a doubly connected domain? H

Yt OW can
extend Cauchy’s integral theorem to jt9 you

sinh z S
18. ——i €k [l = 1 counterclockwige , -
C s N Inte, er

INTEGRATION

Integrate by a suitable method.

21.

3z
(4
— ==l (C ] = ] :
i%;‘ = 7‘_’.)3‘ l2] COUnlerclockwxse.

TEAM PROJECT. Theory on Growth

(a) Growth of entire functions. If 1z
constant and is analytic for all (finite) 7
M are any positive real numbers (ng
large), show that there exist values of
lz| > R and |f(2)| > M. Hint. Use
theorem.

) is not
>and R angd
Mmatter hoy,
2 for whicp
Liouyi]jeg

(b

=

Growth of polynomials. If f(z) is a Polynomig|

of degree n >0 and M is an arbitrary positive

real number (no matter how large), show that

there exists a positive real number R such tha

|f(z)| > M for all |z| > R.

(c) Exponential function. Show that f(z) = ¢* has
the property characterized in (a) but does not haye
that characterized in (b).

(d

=

Fundamental theorem of algebra. If f(z) is a
polynomial in z, not a constant, then f(z) = 0 for
at least one value of z. Prove this. Hint. Use (a).

ONS AND PROBLEMS

- What do you know about derivatives of analytic

functions?

. How did we use integral formulas for derivatives in

evaluating integrals?

. How does the situation for analytic functions differ

with respect to derivatives from that in calculus?
What is Liouville’s theorem? To what complex func-
tions does it apply?

What is Morera’s theorem?

If the integrals of a function f(z) over each of the (WO
boundary circles of an annulus D taken in the sam®
sense have different values, can f(z) be analytic e
where in D? Give reason.

o } f@)de = § Im f(z) dz? Give reason-
g c

Is

§ f@) dz
c

- jﬁ 7@ de2
e}

LA 97
How would you find a bound for the left side in Pre 1.

I zcosh (z2) dz from 0 to if2.
¢

ary of Chapter 14 Seo

summ
2. J (z] +2)dz clockwise around the unit circle. 27. J(Zz 2 ol 0lto 2 D7 shortest path.
G c
[ _—4,7% dz counterclockwise around |-,| = g7 Lnz
23. jL b~ S 28. (f ;sz counterclockwise around [z — 1| = 3.
C cllz=21)
o J Re dz from 0 to 2 + 8i along y = 2x%, 4 1
Gz 29. e — i
b [C<Z o 3[>dz clockwise around
an g . =
2 J il  dz clockwise around lz=1]=0.1, lz=1] =25
G
- 30. J cos zdz from 0 to 5 — i.
2. J 2+ %) dz from z = 0 horizontally to z = 2, then (o

G
vertically upward to 2 + 2i.

— SUMMARY-OF-CHAPTER-14
Complex Integration

The complex line integral of a function f(z) taken over a path C is denoted by

(1) f f(z)dz  or, if Cis closed, also by % f@  (Sec. 14.1).
e

C

If £(z) is analytic in a simply connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

(2) Jf (2) dz = F(z1) = F(zo) [F'(2) = f@]

(o

for every path C in D from a point g to a point z (see Sec. 14.1). These assumptlo?s

imply independence of path, that is, (2) depends only on 2o and z; (and Onhft%)é

of course) but not on the choice of C (Sec. 14.2). .The existence of an F t()z:)1 such thai

F'(z) = f(z) is proved in Sec. 14.2 by Cauchyfs integral theo.rem (seg e owtS e
A general method of integration, not restricted to analytic functions, us

equation z = z(?) of C, wherea =t = b,

b ; e dz)
3) J f@)dz = Jf(z(t))z(t) dt <Z B
C a

important theorem in this chapter. It states

Cauchy’s integral theorem is the mostted Rl e

that if f(z) is analytic in a simply connec
C in D (Sec. 14.2),

= 0.
@ Tk

B T i G
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EXAMPLE 4

EXAMPLE 5

THEOREM 9

PROOF

CHAP.15 Power Series, Taylor Series

Ratio Test

Is the following series convergent or divergent? (First guess, then calculate.)

(100 + 750)™

n!

= 1
> =I+(IOO+75i)+a(100+75i)z+~-‘

n=0

Solution. By Theorem 8, the series is convergent, since

+ 75i" Y )(n + 1)1 + 75i 2
_ 1100 + 75il™"/Gn + Dt [100 + 750 _ 125 & LR n

Zn+1

[100 + 75i|™/n! n+1 n+ 1

in

Theorem 7 More General Than Theorem 8

Let a, = i/2%" and b, = 1/2%"*1, Is the following series convergent or divergent?
1 i 1

1o
byt Ayt byt ittt — o — +
wtbtath T8 6 T ea 128

Solution. The ratios of the absolute values of successive terms are %, ;1;, é, i, -+-. Hence convergence follows
from Theorem 7. Since the sequence of these ratios has no limit, Theorem 8 is not applicable.

Root Test

The ratio test and the root test are the two practically most important tests. The ratio test

is usually simpler, but the root test is somewhat more general.

Root Test
If a series 71 + zg + -+ is such that for every n greater than some N,

) Vien = ¢ <1 (n>N) ‘
(where q < 1 is fixed), this series converges absolutely. If for infinitely many n,

(10) Vzal 2 1,

the series diverges.

If (9) holds, then |z,,| = ¢™ <1 for all n > N. Hence the series lza] + |Zz| 13
converges by comparison with the geometric series, so that the series z1 + 22 +
converges absolutely. If (10) holds, then |z,,| = 1 for infinitely many n. Divergence
z1 + z9 + -+ now follows from Theorem 3.

CAUTION! Equation (9) implies V/|z,,| < 1, but this does not imply convergence
we see from the harmonic series, which satisfies V1 /n <1 (for n > 1) but diverges

SEC.15.1 Sequences, Series, Convergence Tests 679

If the sequence of the roots in (9) and (10) converges, we more conveniently have

THEOREM 10 ' Root Test

If a series 71 + zo + +++ is such that 1!1_12 \7,17 = L, then:
(@) The series converges absolutely if L < 1.
(b) The series diverges if L > 1.
(¢) IfL =1, the test fails; that is, no conclusion is possible.

!
2

PRO-B:LEM—-SET-15:1

SEQUENCES 0 $ont
Is the given sequence zq, 29, +, Zy,, -+ bounded? Con- y n-0 3n% + 2i
vergent? Find its limit points. Show your work in detail. S ( + i)l
1z, = (1 + 72" 2.z, = (1 + 2)"/n! ¥ 20 @n + 1)
n=
3.z, = nm/(2 + 4ni) 4 z2,=Q2-)" i 1
5 7z, = (=" + 5i 6. z, = i 2. Van
3 (2 ) . zl 2y, = (cos 2n7ri)/n =V
7. zp =n% —i/2n 8.z, = [(1 + 2)/V5]" 2 (-1 + )2
9.z, =Q2+2)" 10. z,, = sin (3n7r) + i" 2. 23 2n)!
i
11. CAS EXPERIMENT. Sequences. Write a program = Gi™n!
for graphing complex sequences. Use the program to 24. 2 n
discover sequences that have interesting “geometric” n=1 M n
properties, e.g., lying on an ellipse, spiraling to its limit, 25 (_—i
having infinitely many limit points, etc. ’ oy N

12. Add?ti(.m of Seq;wl’lkces. If 21, 25,-- converges with 26, Significance of (7). What is the difference between (7)
the limit / and zJ, 23, -+ converges with the limit /*, and just stating [z,,., 1/z,,| < 17
show that z; + z§, zo + 25, is convergent with the 27

fimit / + /%, - On Theorems 7 and 8. Give another example showing

that Theorem 7 is more general than Theorem 8.

. Bounded sequence. Show that a complex sequence
- 1 ' 28. CAS EXPERIMENT. Series. Write a pr fi
is bounded if and only if the two corresponding : . prosrah or
. - computing and graphing numeric values of the first
Z:qt'l)ence: ‘;f the real parts and of the imaginary parts partial sums of a sZﬁesgof complex numbers Usl:sthz
€ bounded. :
program to experiment with the rapidity of convergence
. On Theorem 1. Illustrate Theorem 1 by an example of series of your choice. Y g

of your own.
E . ) 29. Absolute convergence. Show that if a series converges
15. On Theorem 2. Give another example illustrating absolutely, it is convergent.

Theorem 2. .
30. Estimate of remainder. Let |z,,.1/z,] = ¢ < I, so

thatthe series z; + zp + -+ - converges by the ratio test.
Show that the remainder R, = z,.,; + Inea + oo
satisfies the inequality [Rp,| = [z,.1]/(1 ~ g). Using
this, find how many terms suffice for computing the
sum s of the series

3 the given series convergent or divergent? Give a reason.
Show details.

(20 + 30)" e
2 T T 17. — = i
n! nga Inn s n+i
oy 2'n

= with an error not exceeding 0.05 and compute s to this
n—i accuracy.

3
1
(=]
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EXAMPLE 6 Extension of Theorem 2

Find the radius of convergence R of the power series

® 1 1 1) 2 13 1
2[‘“‘”"*?]2"5“5“(“4)1 gl

n=0 . N

1
Solution. The sequence of the ratios 1 22 + %), 1/(8(2 + )), -+ does not converge, 5o that Theorad®
of no help. It can be shown that

L = lim Vla,|.

n—®

(6*) R=1/L
This still does not help here, since (\'V—Ia—nb does not converge because \"/m = WZ—" = % for odd nf
for even n we have "
Wial = V2 +1/2"—>1 as n—>,
so that \"/l—a] has the two limit points 3 and 1. It can further be shown that

(6%%*) R=1/T, I the greatest limit point of the sequence {\/'l ]a,,l}

Here T = I, so that R = 1. Answer. The series converges for [z] < L.

Summary. Power series converge in an open circular disk or some even for every z (or
some only at the center, but they are useless); for the radius of convergence, see (6) or
Example 6.

Except for the useless ones, power series have sums that are analytic functions (as we
show in the next section); this accounts for their importance in complex analysis.

PROBLEM-SET 152

. Powerseries. Are1/z + z + 22 + --- andz + 2%
. Radius of convergence. What i
. Convergence. What are the

. On Examples 1-3. Exten

¢ b SOETVEL DI ) 1

2+ + power series? Explain.

motivates its name? How can you
possibilities for the converge

powers of z — 4 +
of radius of conver;
Powers z>”. .
convergence
radius of con

ctions Given by Power Seri
6EC. 15.3 Functions Gl y eries 685

(his order, depending on the existence of the limits
needed. Test the programion some series of your choice
such that all three formulas (6), (6%), and (6**) will

come Up-

(i) multiply all a, by k™ # 0, (iii) replace a, by
1/a,? Can you think of an application of this?

(¢) Understanding Example 6, which extends
Theorem 2 to nonconvergent cases of dn/dn+1-
Do you understand the principle of “mixing” by
which Example 6 was obtained? Make up further
examples.

(d) Understanding (b) and (c) in Theorem 1. Does

TEAM PROJECT. Radius of Convergence.

(a) Understanding (6). Formula (6) for R contains

|/ an+1], MOt |@y+1/a|. How could you memorize
‘s by using a qualitative argument? %

this by g there exist a power series in powers of z that converges

(b) Change of coefficients. What happens to R at z =30 + 10i and diverges at z = 31 — 6i? Give
©O<R< ») if you (i) multiply all a, by k # 0, reason.

20.

5.3 Functions Given by Power Series

Here, our main goal is to show that power series represent analytic functions. This fact
(Theorem 5) and the fact that power series behave nicely under addition, multiplication,
differentiation, and integration accounts for their usefulness.

To simplify the formulas in this section, we take zo = 0 and write

(D D, o
n=0

There is no loss of generality because a series in powers of Z— 2o with any zo can always
be reduced to the form (1) if we setZ — zop = 2.

Terminology and Notation. If any given power series (1) has a nonzero radius of
convergence R (thus R > 0), its sum is a function of z, say f(z). Then we write

@) f@= et =ap+azta®+ (Il <R).
n=0

We say that f(2) is represented by the power series ot that it is developed in the power
series. For instance, the geometric series represents the function f(z) = 1/(1 — 2) in the
interior of the unit circle |z| = 1. (See Theorem 6 in Sec. 15.1.)

Uniqueness of a Power Series Representation. This is our n.ext g.oal. It means that a

function f(z) cannot be represented by two different power series wzth. the same centemr.

We claim that if f(z) can at all be developed in a power serics with center Zzo, lei
it development is unique. This important fact is frequently used in complex analysis (as wel

.. V as in calculus). We shall prove it in Theorem 2. The proof will follow from

Continuity of the SIign:( a Power Series

Ifa ﬁmctiori f(@) canbe repiésented by a power series (2) with rqdius of convergence

R > 0, then f(z) is continuous at = 0. s s o ol
: § 7_'1':’1'4&751 g0 e g



