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EXAMPLE §

CHAP. 16 Laurent Series. Residue Integration

Fig. 372. Riemann sphere

Riemann Sphere. Point at Infinity

When we want to study complex functions for large |z|, the complex plane will generally
become rather inconvenient. Then it may be better to use a representation of complex numbers
on the so-called Riemann sphere. This is a sphere S of diameter 1 touching the complex
zplane at z = 0 (Fig. 372), and we let the image of a point P (a number z in the plane) be
the intersection P* of the segment PN with S, where N is the “North Pole” diametrically
opposite to the origin in the plane. Then to each z there corresponds a point on S. |
Conversely, each point on S represents a complex number z, except for NZ which does
not correspond to any point in the complex plane. This suggests that we introduce an
additional point, called the point at infinity and denoted o (“infinity”) and let its ima
be N. The complex plane together with o is called the extended complex p!ane. -
complex plane is often called the finite complex plane, for distinction, or snmp!y the
complex plane as before. The sphere S is called the Riemann sphere. The mapping of
the extended complex plane onto the sphere is known as a stereographic projectfo
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straigh
line through the origin?)

Analytic or Singular at Infinity

If we want to investigate a function f(z) for large |z[, we may now setz = 1/w and investig
f(2) = f(1/w) = g(w)in aneighborhood of w = 0. We define f(2) to be analytic or sin; gt
at infinity if g(w) is analytic or singular, respectively, at w = 0. We also define

@ 80 = lim g(w)

if this limit exists. -
Furthermore, we say that f(z) has an nth-order zero at infinity if f(1/w) has such
at w = 0. Similarly for poles and essential singularities.

Functions Analytic or Singular at Infinity. Entire and Meromorphic Functions

The function f(z) = 1/2% iis analytic at % since giw) = £(1/w) = w?is analytic at w = 0, und!j(z)
order zero at . The function f(z) = % is singular at o and has a third-order pol§ Lherc~smce i
g(w) = f(1/w) = 1/w® has such a pole at w = 0. The function e* has an essential smglllﬂrlly at
has such a singularity at w = 0. Similarly, cos z and sin z have an essential singularity at =. '
Recall that an entire function is one that is analytic everywhere in the (finite) complex plane.
theorem (Sec. 14.4) tells us that the only bounded entire functions are the constants, hence. n&;n H‘
entire function must be unbounded. Hence it has a singularity at ©, a pole if it is a polynomial o
singularity if it is not. The functions just considered are typical in this respect.

ZEROS

Determine the location and order of the zeros.

SEC. 163 Residue Integration Method
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An analytic function whose only singularities in the finite plane are poles is called a meromorphic function.
Examples are rational functions with nonconstant denominator, tan z, cot z, sec z, and csc z.

In this section we used Laurent series for investigating singularities. In the next section
we shall use these series for an elegant integration method.

PROBLEM SET 16.2

1. sin*3z 2. (z + 81)*

3. tan? 2z 4. cosh*z

5. Zeros. If f(z) is analytic and has a zero of order n at
z = zo, show that fz(z) has a zero of order 2n at 2o

6. TEAM PROJECT. Zeros. (a) Derivative. Show that
if f(z) has a zero of order n > 1 at z = z, then f/(2)
has a zero of order n — 1 at z.
(b) Poles and zeros. Prove Theorem 4.
(c) Isolated k-points. Show that the points at which

a nonconstant analytic function £(z) has a given value
k are isolated.

(d) Identical functions. If f;(z) and Ja(2) are analytic
in a domain D and equal at a sequence of points z,, in
D that converges in D, show that fi(2) = fo(2) in D.

n=0

SINGULARITIES

Determine the location of the singularities, including those

at

infinity. For poles also state the order. Give reasons.
! £ + -5 *1 8. tan 7
T e T Tt ——5 . tan 7rz
z+2)? z—i (z —i)?

9. (z— mtsinz
10. Essential singularity. Discuss ¢!/% in a similar way as
e is discussed in Example 3 of the text.
11. Poles. Verify Theorem 1 for £2) =273 - 271 Prove
Theorem 1.
12. Riemann sphere. Assuming that we let the image of

hd b
Q=3 anlz — 2" + ——

the x-axis be the meridians 0° and 180°, describe and
sketch (or graph) the images of the following regions
on the Riemann sphere: @) |z| > 100, (b) the lower
half-plane, (¢) 3 = |z] = 2.

16.3 Residue Integration Method

We now cover a second method of evaluating complex integrals. Recall that we solved
complex integrals directly by Cauchy’s integral formula in Sec. 14.3. In Chapter 15 we
learned about power series and especially Taylor series. We generalized Taylor series to
Laurent series (Sec. 16.1) and investigated singularities and zeroes of various functions
(Sec. 16.2). Our hard work has paid off and we see how much of the theoretical groundwork
comes together in evaluating complex integrals by the residue method.

The purpose of Cauchy’s residue integration method is the evaluation of integrals

% f2)dz
(o]

taken around a simple closed path C. The idea is as follows.

If f(2) is analytic everywhere on C and inside C, such an integral is zero by Cauchy’s
integral theorem (Sec. 14.2), and we are done.

The situation changes if f(z) has a singularity at a point z = zq inside C but is otherwise
analytic on C and inside C as before. Then f(z) has a Laurent series

by

‘2.}....
2—20 (z—zp)

—_
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EXAMPLE 5

EXAMPLE 6

EXAMPLE 7
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Integration by the Residue Theorem. Several Contours

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside
C, (b) 0 is inside, | outside, (c) 1 is inside, O outside, (d) 0 and 1 are outside.

RESIDUES
7. 5{ tan2mzdz, C:lz - 02) =02
(o}

Find all the singularities in the finite plane and the

4 -3z
£ r _; dz corresponding residues. Show the details.
<
sin 2
| i z 2 8 8. fel/z dz, C: the unit circle
Solution. The integrand has simple poles at 0 and 1, with residues [by (3)] z 1+ zz c
3. tanz L QL= exp (—z2
4-3z [4-3; 4-3z r4-3; i 9-f ?( )a’z Clzl =15
R35ﬁ= [_;—Ijl = —4, Res T= [ ] =1 c sin 4z ’ ’ )
0 2z — 1) z i o =1 2z — 1) z ) 5. CAS PROJECT. Residue at a Pole. Write a program
for. calculating the residue at a pole of anyorderinthe ¢ 2 cosh 77z
finite plane. Use it for solving Probs. 5-6 (and online ’ o2t + 132 4 36 dz, |zl =7

Probs. 7-10).

6-10 | RESIDUE INTEGRATION
‘Evaluate (counterclockwise). Show the details.

[Confirm this by (4).] Answer: (a) 2mi(—4 + 1) = —6mi, (b) —8ri, (c) 277i, (d) 0.

Another Application of the Residue Theorem
Integrate (tan z)/(z2 — 1) counterclockwise around the circle C: lz| = 3.

Solution. tanz is not analytic at +7r/2, =37/2,---, but all these points lie outside the contour C. Because

z—23
of the denominator 72 — | = (z = 1)z + 1) the given function has simple poles at = 1. We thus obtain from 6. - ———dz, Cilz~2 < =
] ) 1=2-il=32
c

2
(4) and the residue theorem F—4z -5
tan z _®_ tan z tan z
A —22 = dz = 2mri lz{_els _zz — + 213951 aT—_l

tan z tan z
= 2mi| —
2 lzea 2z lzm—y

6.4 Residue Integration of Real Integrals

SUIleSlﬂg]), leSIdue mteglatlou can also be used to e‘aluate certain ClaSSeS of
p g Is Th hOWS an adVa tage of complex alla]ySlS over real
com llCated real Integrals. 1S § n

= 2mitan | = 9.7855i.

Poles and Essential Singularities
Evaluate the following integral, where C is the ellipse 9x2 + y2 = 9 (counterclockwise, sketch it).

_e7rz :
jg ( ; + ze""‘) dz.
c\z” - 16

Solution. Since z* — 16 = 0 at +2i and =2, the first term of the integrand has simple poles at *2i in

Integrals of Rational Functions of cos 6 and sin 6

We first consider integrals of the type

C, with residues [by (4); note that 2™ = 1]
1 27
T 20TZ .
Res qze = {“8_3 -1 : (1 J= f F(cos 6, sin 6) dp
=2 16 | 425 |, 16 A
zeﬂz ze™ 1 ) X )

,Reii - [4_23_J -+ (\a;here;1 F(co;)?, sin 0) is a real rational function of cos @ and sin 6 [for example, (sin® 0)/

-2 7% — 2=-2i >, 7 €os 0)] and is finite (does not become infini i . N .
¢ = 2, we obtain infinite) on the interval of integration. Setting

has an essential singularity at 0, with residue 772/2 as obtained from

19 ; 1
0=—("+ 10 = 1 1
cos 2(e +e™™) 2(z+_>

e . w? L w1 ;
R R R RE R Ear @ .
! 10y ; 1
Sinf = (e —pmiey . 1L 1
2i ) 2 Z /P

Answer: 2i(— 15 — 113 + %‘n’z) = m(mw? ~ bi = 30221 by the residue theorem.

EE———
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semicircle S approaches 0 as R— . For r—0 the integral over C, (clockwise!)
approaches the value

—= PROBLEM SET 16.4

-

INTEGRALS INVOLVING COSINE AND SINE
Evaluate the following integrals and show the details of
your work.

= —1riRes f(z)
zZ=a

by Theorem 1. Together this shows that the principal value P of the integral from —oo to

T 2m ;
@ plus K equals J; hence P = J ~ g = J + TiRes,_, f(z). If f(2) has several simple 1 f _2d9 2. f ! +sing
poles on the real axis, then K will be —ri times the sum of the corresponding residues, ; y k—cosé 3+ cosg
Hence the desired formula is 7 in2g P g rw cos § P
% y 5 —4cosd : 13 ~ 12 cos 260

(14) IMPROPER INTEGRALS:

INFINITE INTERVAL OF INTEGRATION
Evaluate the following integrals and show details of your
work.

pr.v. j f(x) dx = 277i 3 Res f(z) + i > Res f(z)

where the first sum extends over all poles in the upper half-plane and the second over al]

poles on the real axis, the latter being simple by assumption. = = 2
U o ST
EXAMPLE 4 Poles on the Real Axis Le(l + x2)3 o xt 4]
Find the principal value 5 JG 4d\ 8. Jz x =
xSl =8 —x

[t
pr. v. Yy T ————

e (= 3x 4 2) a2 4 ) IMPROPER INTEGRALS:

POLES ON THE REAL AXIS
Solution. Since

x2—3.\'+2=(x—l)(x_2)v

the integrand f(x), considered for complex z, has simple poles at

z=1, Res f(z) = [\IJ
z=1 =1

=22+ 1)

1
>

=2, Res f(z) = [+J
o E=DE"+ 1) oo at is a Laurent series? Its principal part? Its use?
5l Give simple examples.
s at kind of singularities did we discuss? Give defi-
! itions and examples.
2=, ISSI'S f@) = ml-i At is the residue? Its role in integration? Explain

methods to obtain i,

an the residue at 3 singularity be zero? At a simple
Pole? Give reason,

3=

6+ 2i 20

Slate the resiq i i
and at z = —i in the lower half-plane, which is of no interest here. From (14) we get the answer’ ! due theorem and the idea of its proof from

TVf= = 2.(3~i)+ ( ]+l)—1
V. - BRI &
N B v e L 20 /)" ™\72%5) 10

More integrals of the kind considered in this section are included in the problem
also your CAS, which may sometimes give you false results on complex integr:
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3 x+5 2
ll.f (163 12, f ——— dx
o3 -y _,.r4—l

13. CAS EXPERIMENT. Simple Poles on the Real
Axis. Experiment with integrals  [*_ f(x) dx,
SO = (v — ap)(x - ag) -+ (x — ap)] 7, a; real and
all different, k > |. Conjecture that the principal value
of these integrals is 0. Try to prove this for a special
k, say, k = 3. For general .

14. TEAM PROJECT. Comments on Real Integrals.
(a) Formula (10) foliows from (9). Give the detals.
(b) Use of auxiliary results, Integrating e~ around
the boundary C of the rectangle with vertices —a, q,
a+ib, —a + ib, letting a — =, and using

L
[eas .

0
show that
f e % cos 2bxdx = X;—Ie_bz.

0

(This integral is needed in heat conduction in Sec.
12.7.)
(¢) Inspection. Solve online Probs. 1 and 2 without
calculation.

6. How did we evaluate real integrals by residue integration?
How did we obtain the closed paths needed?
7. What are improper integrals? Their principal value?
Why did they occur in this chapter?
8. What do you know about zeros of analytic functions?
Give examples.
9. What is the extended complex plane? The Riemann
sphere R? Sketch z = | + j on R.
10. What is an entire function? Can it be analytic at infinity?
Explain the definitions.



