- NTNU

Institutt for matematiske fag

TMA4120 Matematikk 4K

Høsten 2023

Løsningsforslag - Øving 1

From Kreyszig (10th), chapter 6.1

1 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be given by $f(t)=2 t+8$. Then it follows that

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} e^{-s t}(2 t+8) d t=2 \int_{0}^{\infty} t e^{-s t} d t+8 \int_{0}^{\infty} e^{-s t} d t=\frac{2}{s^{2}}+\frac{8}{s}
$$

In the last calculation we have used integration by part to calculate that

$$
\int_{0}^{\infty} t e^{-s t}=\frac{1}{s^{2}}
$$

In the last calculation we have used integration by parts.
12 We have

$$
f(t)= \begin{cases}t, & \text { for } 0<t<1 \\ 1, & \text { for } 1<t<2 \\ 0, & \text { for } t>2\end{cases}
$$

Therefore

$$
\mathcal{L}(f)(s)=\int_{0}^{1} t e^{-s t} d t+\int_{1}^{2} e^{-s t} d t
$$

Using integration by parts for the first integral, we get

$$
\begin{aligned}
\mathcal{L}(f)(s) & =-\left.\frac{1}{s} e^{-s t} t\right|_{0} ^{1}-\int_{0}^{1}\left(-\frac{1}{s} e^{-s t}\right) d t-\left.\frac{1}{s} e^{-s t}\right|_{1} ^{2} \\
& =-\frac{1}{s} e^{-s}+\frac{1}{s}\left(-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{1}\right)-\frac{1}{s} e^{-2 s}+\frac{1}{s} e^{-s} \\
& =\frac{1}{s^{2}}\left(1-e^{-s}\right)-\frac{1}{s} e^{-2 s}
\end{aligned}
$$

23 Let $\mathcal{L}(f)(t)=F(s)$. By applying the definition of the Laplace transform given in (1) on page 204 to $f(c t)$ we see that

$$
\mathcal{L}(f(c t))=\int_{0}^{\infty} e^{-s t} f(c t) d t
$$

The substituting $\tau=c t$ we obtain

$$
\int_{0}^{\infty} e^{-s t} f(c t) d t=\int_{0}^{\infty} e^{-(s / c) \tau} f(\tau) \frac{d \tau}{c}=\frac{1}{c} F\left(\frac{s}{c}\right) .
$$

We have thus shown that

$$
\begin{equation*}
\mathcal{L}(f(c t))=\frac{1}{c} F\left(\frac{s}{c}\right) . \tag{1}
\end{equation*}
$$

For part two of the exercise we use table 6.9.14 and see that

$$
\mathcal{L}(\cos (t))=\frac{s}{s^{2}+1} .
$$

Then applying the formula (1) from above we see that

$$
\begin{aligned}
\mathcal{L}(\cos (\omega t)) & =\frac{1}{\omega} \frac{s / \omega}{(s / \omega)^{2}+1} \\
& =\frac{s}{s^{2}+\omega^{2}} .
\end{aligned}
$$

25 Let

$$
F(s)=\frac{0.2 s+1.4}{s^{2}+1.96}
$$

We know that

$$
\mathcal{L}(\cos \omega t)=\frac{s}{s^{2}+\omega^{2}},
$$

and that

$$
\mathcal{L}(\sin \omega t)=\frac{\omega}{s^{2}+\omega^{2}}
$$

Thus observing that $1.4^{2}=1.96$ it follows that

$$
\begin{aligned}
\frac{0.2 s+1.4}{s^{2}+1.96} & =0.2 \frac{s}{s^{2}+1.96}+\frac{1.4}{s^{2}+1.96} \\
& =0.2 \mathcal{L}(\cos (1.4 t))+\mathcal{L}(\sin (1.4 t)) \\
& =\mathcal{L}(0.2 \cos (1.4 t)+\sin (1.4 t)) \\
\Rightarrow f(t) & =0.2 \cos (1.4 t)+\sin (1.4 t)
\end{aligned}
$$

26 We first observe that (6) i tabellen side 207.

$$
\frac{5 s+1}{s^{2}-25}=\frac{12}{5} \frac{1}{s+5}+\frac{13}{5} \frac{1}{s-5}
$$

by using fractions by parts. Then using (6) from page 207 we see that

$$
\frac{12}{5} \frac{1}{s+5}+\frac{13}{5} \frac{1}{s-5}=\frac{12}{5} \mathcal{L}\left(e^{-5 t}\right)+\frac{13}{5} \mathcal{L}\left(e^{5 t}\right)
$$

Hence it follows that

$$
f(t)=\frac{12}{5} e^{-5 t}+\frac{13}{5} e^{5 t}
$$

Alternatively one can do as follows:

$$
\begin{aligned}
\frac{5 s+1}{s^{2}-25} & =5 \frac{s}{s^{2}-25}+\frac{1}{5} \frac{5}{s^{2}-25} \\
& =5 \mathcal{L}(\cosh (5 t))+\frac{1}{5} \mathcal{L}(\sinh (5 t)) \\
& =\mathcal{L}\left(5 \cosh (5 t)+\frac{1}{5} \sinh (5 t)\right) \\
\Rightarrow f(t) & =5 \cosh (5 t)+\frac{1}{5} \sinh (5 t)
\end{aligned}
$$

Note that these answers are equivalent.
31 We factorize the polynominal in the denominator and see that

$$
F(s)=\frac{-s+11}{s^{2}-2 s-3}=\frac{-s+11}{(s+1)(s-3)}=\frac{2(s+1)-3(s-3)}{(s-3)(s+1)}=2 \frac{1}{s-3}-3 \frac{1}{s+1} .
$$

Each of the parts of the last expression has a know Laplace transform (table 6.1.6) Thus we see that

$$
\mathcal{L}^{-1}(F)(t)=2 e^{3 t}-3 e^{-t}
$$

40 Since

$$
F(s)=\frac{4}{s^{2}-2 s-3}=\frac{4}{(s-1)^{2}-4}
$$

we may use s-Shifiting, the sinh - transform and linearity of \mathcal{L}^{-1}, to find

$$
\begin{aligned}
e^{-t} f(t) & =\mathcal{L}^{-1}(F(s+1)) \\
& =\mathcal{L}^{-1}\left(\frac{2 \cdot 2}{s^{2}-2^{2}}\right)=2 \sinh 2 t
\end{aligned}
$$

That is

$$
\mathcal{L}^{-1}(F(s))=f(t)=2 e^{t} \sinh 2 t
$$

A Find the partial fraction decomposition of the following functions. When you have found an answer; check that your solution is correct by adding all the parts of the partial fraction decomposition together again.
1.

$$
f(x)=-\frac{x+1}{(2 x+1)(x-1)}
$$

2.

$$
g(x)=\frac{16 x-6}{(2 x-5)(3 x+1)}
$$

3.

$$
h(x)=\frac{1}{x(x+1)^{2}}
$$

Solution exercise A1.

Since the denominator is a product of two linear factors $(x-a)(x-b)$ with $a \neq b$ we know that there exist constants A and B such that

$$
-\frac{x+1}{(2 x+1)(x-1)}=\frac{A}{2 x+1}+\frac{B}{x-1} .
$$

To find the constants A and B we write sum the right hand side of the equation above so we can write it as one fraction;

$$
\frac{A}{2 x+1}+\frac{B}{x-1}=\frac{A(x-1)+B(2 x-1)}{(2 x+1)(x-1)}=\frac{(2 B+A) x-A+B}{(2 x+1)(x-1)}
$$

Thus it follows that $2 A+B=-1$ and $A+B=-1$. Solving these equations we see that $A=-1 / 3$ and $B=2 / 3$. Then it follows that

$$
f(x)=-\frac{x+1}{(2 x+1)(x-1)}=\frac{1}{3(2 x+1)}-\frac{2}{3(x-1)}
$$

To check that we have not made any mistakes, we sum the fractions and see that we get the expresion we started with:

$$
\frac{1}{3(2 x+1)}-\frac{2}{3(x-1)}=\frac{x-1-2(2 x+1)}{3(2 x+1)(x-1)}=\frac{-x-1}{(2 x+1)(x-1)}
$$

Solution exercise A2.

We do the same as in the previous exercise and calculate:

$$
\frac{16 x-6}{(2 x-5)(3 x+1)}=\frac{A}{2 x-5}+\frac{B}{3 x+1}=\frac{(3 x+1) A+(2 x-5) B}{(2 x-5)(3 x+1)}=\frac{x(3 A+2 B)+A-5 B}{(2 x-5)(3 x+1)}
$$

To find the constants A and B we must solve the equations $3 A+2 B=16$ and $A-5 B=6$. It follows that $A=4$ and $B=2$. We can now see that

$$
\frac{16 x-6}{(2 x-5)(3 x+1)}=\frac{4}{(2 x-5)}+\frac{2}{3 x+1} .
$$

To check that we have not made any mistakes, we sum the fractions and see that we get the expresion we started with:

$$
\frac{4}{(2 x-5)}+\frac{2}{3 x+1}=\frac{4(3 x+1)+2(2 x-5)}{(2 x-5)(3 x+1)}=\frac{16 x-6}{(2 x-5)(3 x+1)} .
$$

Solution exercise A3.

We observe that the denumerator consits of repiting linear factors and we must thus use a slightly different approach than in the previous exercises. We know there exists constants A, B and C such that

$$
\frac{1}{x(x+1)^{2}}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} .
$$

To find the constants A, B and C we calculate the right hand side:

$$
\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}=\frac{A(x+1)^{2}+B(x+1) x+C x}{x(x+1)^{2}}=\frac{(A+B) x^{2}+(2 A+B+C) x+A}{x(x+1)^{2}}
$$

We see that it must be the case that $A+B=0,2 A+B+C=0$ and $A=1$. Solving this system of equations we see that $A=1, B=-1$ and $C=-1$. Thus it follows that

$$
\frac{1}{x(x+1)^{2}}=\frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}
$$

To check that we have not made any mistakes, we sum the fractions and see that we get the expresion we started with:

$$
\frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}=\frac{(x+1)^{2}-x(x+1)-x}{x(x+1)^{2}}=\frac{x^{2}+2 x+1-x^{2}-x-x}{x(x+1)^{2}}=\frac{1}{x(x+1)^{2}}
$$

