EXAM IN CALCULUS 4N (TMA4125)
Monday June 06, 2005
Time: 09:00 - 13:00

Hjelpemidler: Simple calculator (HP 30S), Rottmann: matematisk formelsamling

Grades: 27.06.05

Oppgave 1
a) Find the inverse Laplace transform of the function

\[F(s) = \frac{s + 4}{(s + 2)^2} \]

b) Solve the initial value problem:

\[y''(t) + 4y'(t) + 4y(t) = 0, \quad t \geq 0, \quad y(0) = 1, \quad y'(0) = 0. \]

c) Solve the integral equation:

\[y(t) + \int_0^t e^{-(t-\tau)} y(\tau)d\tau = e^{-2t}, \quad t > 0. \]

Oppgave 2
a) Find Fourier series for 2\pi-periodic even function \(f(t) \) such that \(f(x) = \frac{\pi}{2} - x, \ 0 < x < \pi. \)
b) Find all solutions of the form \(u(x, t) = X(x)T(t) \) for the problem:

(1) \(\frac{\partial^2 u}{\partial x^2} - 2u - \frac{\partial u}{\partial t} = 0, \ 0 < x < \pi, \ t > 0. \)

(2) \(u_x(0, t) = 0, \ u_x(\pi, t) = 0, \ t > 0. \)

c) Find the solution to the problem (1), (2) in part b.) which also satisfies the initial condition

\[u(x, 0) = \frac{x}{\pi} - x, \ 0 < x < \pi. \]

Oppgave 3

Find complex Fourier transform of the function \(f(x) = e^{-|x|} \) and then find the value of the integral

\[\int_{-\infty}^{\infty} \frac{\cos \omega}{1 + \omega^2} d\omega \]

Oppgave 4

- a) Find a polynomial of the smallest possible degree which solves the interpolation problem

| \(x_k \) | -2 | -1 | 0 | 1 | 2 |
| \(p(x_k) \) | 6 | 0 | 0 | 0 | 15 |

- b) Let \(p(x) \) be the polynomial from part a). Using the Simpson method with step 1 evaluate the integral \(\int_{-2}^{2} p(x) dx \).
Oppgave 5

We are solving partial differential equation

\[u_t = u_{xx}, \quad -1 \leq x \leq 1, \quad t \geq 0 \]

\[u(x,0) = 1 - x^2, \]

\[u(-1,t) = 0, \quad u(1,t) = 0, \quad t \geq 0. \]

Let \(\kappa = 0.5, h = 0.5. \) Using the Crank-Nicolson method write down the system of linear equations for the values

\[u_{11} \approx u(-0.5, 0.5), \quad u_{21} \approx u(0, 0.5), \quad u_{31} \approx u(0.5, 0.5). \]