Project for weeks 9 and 10

Laplace transform

Find the Laplace transforms:

1.
$$\mathcal{L}(5-3t+4\sin 2t-6e^{4t})$$
.

2.
$$\mathcal{L}(e^{-3t}\sin 2t)$$

3.
$$\mathcal{L}(t^2e^t)$$

4.

$$\mathcal{L}\left\{\int_0^t (\tau^3 + \sin 2\tau) d\tau\right\}$$

5. The gamma function is defined by

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt, \quad (\alpha > 0).$$

- prove that $\Gamma(1) = 1$,
- prove that $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$. In fact, if n is a positive integer, show that $\Gamma(n+1)=n!$
- 6. Find $\mathcal{L}(f)$, where f is defined by

$$f(t) = \begin{cases} 3, & \text{for } 0 \le t < 4; \\ -5, & \text{for } 4 \le t < 6; \\ e^{-t}, & \text{for } t > 6. \end{cases}$$

7. Find $\mathcal{L}(f)$, where f is defined by

$$f(t) = \begin{cases} t, & \text{if } 0 \le t < 1; \\ -2 - t, & \text{if } 1 \le t < 3; \\ t - 4, & \text{if } 3 \le t < 46; \\ 0, & \text{otherwise.} \end{cases}$$

Sketch the graph of f.

8. Find $\mathcal{L}(f)$, where f is defined by

$$f(t) = [u(t-1) - u(t-3)] \sin 3t,$$

here u is the Heaviside function. Sketch the graph of f.

9. The following image shows the graph of a periodic function f(t).

Find $\mathcal{L}(f)$

- 10. In mathematics the symbol [t] calls for the greatest integer not exceeding the number t. For example $[3\frac{1}{2}] = 3$ and [-1.2] = -2. Define f(t) = [t] for t > 0.
 - sketch the graph of f. Remark why this function is often called the $staircas\ function$
 - find $\mathcal{L}(f)$. (Hint. Use the results of the previous item).

Find the inverse Laplace transforms:

1.
$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2(s^2+9)}\right\}$$

2.
$$\mathcal{L}^{-1}\left\{\frac{s+7}{s^2+2s+5}\right\}$$

3. Find
$$\mathcal{L}^{-1}(F)$$
 where

$$F(s) = \frac{e^{-2s}}{s(s^2 + 9)}$$

4. Find
$$\mathcal{L}^{-1}(e^{2s})$$

5. Let $f(t) = \sin t$ and g(t) = t, the both are defined for t > 0. Compute the convolution f * g in two ways. First directly from the definition of the convolution. Next, compute $F = \mathcal{L}(f)$ and $G = \mathcal{L}(g)$, and then compute $f * g = \mathcal{L}^{-1}(FG)$. Take care about obtaining the same result!

Solve the initial value problems.

1.
$$y'' + 2y' + 2y = \cos 2t, \text{ for } t > 0 \text{ with } y(0) = 0 \text{ and } y'(0) = 1.$$

2.

$$x''(t) - 2x'(t) - 3x(t) = e^{2t}$$
, for $t > 3$ with $x(3) = 1$ and $x'(3) = 0$.

3. $y'' - 4y' + 3y = \delta(t), \text{ for } t > 0 \text{ with } y(0) = 0 \text{ and } y'(0) = 0,$

here δ denotes the Dirac delta function.

4. Prove that the solution to the equation

$$y'' + y = g(t)$$
, for $t > 0$ with $y(0) = 1$ and $y'(0) = -2$,

where g is, say, some piecewise continuous bounded function, has the form

$$y(t) = \cos t - 2\sin t + \int_0^t \sin(t - \tau)g(\tau)d\tau$$

5. Solve the system of differential equations:

$$y_1'(t) + y_2'(t) + 5y_1(t) + 3y_2(t) = e^{-t}$$

$$2y_1'(t) + y_2'(t) + Y_1(t) + y_2(t) = 3$$

provided that $y_1(0) = 2$ and $y_2(0) = 1$

Applications

1. In the parallel network on the picture belowthere is no current flowing in either loop prior to closing the switch at time t = 0. Deduce the currents $i_1(t)$ and $i_2(t)$ in the loops at the time t.

2. The mass of the mass-spring-damper sysstem on the figure below is subject to an externally applied periodic force $F(t) = 4 \sin \omega t$ starting from the moment t = 0. Determine the resulting displacement of the mass at time t, given that x(0) = 0 and x'(0) = 0, for the two cases:

(a)
$$\omega = 2$$
 (b) $\omega = 5$

In the case $\omega=5,$ what would happen to the response if the damper were missing?

Figure to problem 2:

This is the Laplace part of the project.
The rest will be published soon.