

Exercises from Kreyszig (8th ed):

1 Exercise 5.1.7

Find the Laplace transform of the following function. Show the details of your work. (ω and δ are constant.)

 $\sin(\omega t + \delta)$

2 Exercise 5.1.9

Find the Laplace transform of the following function. Show the details of your work.

3 Exercise 5.1.19

Given $F(s) = \mathcal{L}(f)$, find f(t). Show the details.

$$\frac{-s-10}{s^2-s-2}$$

4 *Exercise* 5.1.22

Given $F(s) = \mathcal{L}(f)$, find f(t). Show the details.

$$\frac{60+6s^2+s^4}{s^7}$$

5 *Exercise* 5.1.32

Application of the First Shifting Theorem Find the Laplace transform. (Show the details.)

$$2e^{-t}\cos^2\frac{t}{2}$$

6 *Exercise* 5.1.37

Application of the First Shifting Theorem Find the inverse transform. (Show the details.)

$$\frac{3}{s^2+6s+18}$$

7 Exercise 5.2.3

Initial value problems. Solve the following initial value problem by the Laplace transform. (Show the details of your work.)

$$y' + 0.2y = 0.01t, \quad y(0) = -0.25$$

8 Exercise 5.2.9

Initial value problems. Solve the following initial value problem by the Laplace transform. (Show the details of your work.)

$$y'' + 2y' - 3y = 6e^{-2t}, \quad y(0) = 2, \quad y'(0) = 14$$

9 *Exercise* 5.2.13

New Inverse Transforms by Integration (Theorem 3). Given $\mathcal{L}(f)$, find f(t). (Show the details of your work.)

$$\frac{1}{s^2 + 4s}$$

10 Exercise 5.2.19

New Inverse Transforms by Integration (Theorem 3). Given $\mathcal{L}(f)$, find f(t). (Show the details of your work.)

$$\frac{9}{s^2} \left(\frac{s+1}{s^2+9} \right)$$

Non-Kreyszig exercise:

11 Find the function y(t), t > 0 satisfying the differential equation

$$y''(t) - 2y'(t) + y(t) = 1, \quad t > 0$$

such that y(0) = 0 and y(1) = 10.