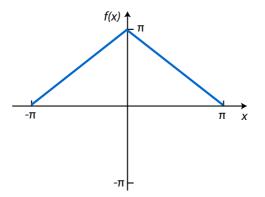


Exercises from Kreyszig (9th ed):

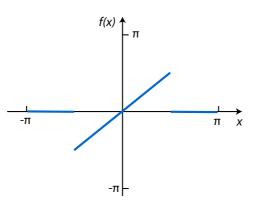
1 Exercise 11.1.15

Showing the details of your work, find the Fourier series of the given f(x), which is assumed to have the period 2π . You do not need to sketch the partial sums.



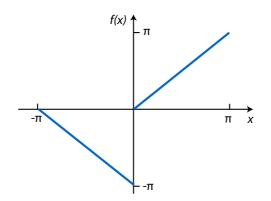
2 Exercise 11.1.16

Showing the details of your work, find the Fourier series of the given f(x), which is assumed to have the period 2π . You do not need to sketch the partial sums.



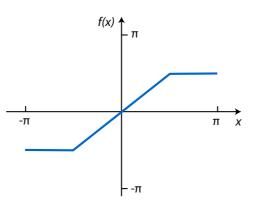
3 Exercise 11.1.19

Showing the details of your work, find the Fourier series of the given f(x), which is assumed to have the period 2π . You do not need to sketch the partial sums.



4 *Exercise 11.1.20*

Showing the details of your work, find the Fourier series of the given f(x), which is assumed to have the period 2π . You do not need to sketch the partial sums.



5 Exercise 11.6.12

Using Parseval's identity, prove that the series have the indicated sum. Compute the first few partial sums to that the convergence is rapid.

$$1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \dots = \frac{\pi^4}{96} = 1.014678032$$

Use Problem 11.1.15.

Exercises from Kreyszig (8th ed):

6 Exercise 17.1.3

Small differences of large numbers may be particularly strongly affected by rounding errors. Illustrate this by computing 0.81534/(35.724-35.596) as given with 5S (5 significant digits), then rounding stepwise to 4S, 3S and 2S, where 'stepwise' means: round the rounded numbers, not the given ones.

7 Exercise 17.1.5

Write the quotient a/(b-c) in Prob. 17.1.3 as $a(b+c)/(b^2-c^2)$. Compute it first with 5S, then round the numerator 58.150 and the denominator 9.1290 stepwise as in Prob 17.1.3. Compare and comment.

8 *Exercise* 17.1.9

(Change of formula) How can we get good values of $\sqrt{9 + x^2} - 3$ if |x| is small?

9 Exercise 17.2.1

Why do we obtain a monotone sequence in Example 1, but not in Example 2?

10 *Exercise* 17.2.2

Perform the iterations indicated at the end of Example 2. Sketch a figure similar to Fig. 395.

11 Exercise 17.2.17

(Vibrating beam) Find the solution of $\cos x \cosh x = 1$ near $x = \frac{3}{2}\pi$ to 6S-accuracy. (This determines a frequency of a vibrating beam; see Problem set 11.4.)

12 Exercise 17.2.21

Solve the given problem by the secant method, using x_0 and x_1 as indicated.

Prob. 17, $x_0 = 4$, $x_1 = 5$

Non-Kreyszig exercise:

13 Formuler Newtons metode for systemet:

$$x^{2} + xy^{3} - 9 = 0$$

$$3x^{2}y - y^{3} - 4 = 0.$$

Bruk startverdiene $x_0 = 1.2$ og $y_0 = 2.5$ og utfør to iterasjoner.

14 Bruk Lagrangeinterpolasjon for å finne et polynom av grad 3 som interpolerer datasettet

x_i	-1	0	2	3
y_i	2	0	2	0

15 Interpoler $f(x) = \sin(x)$ i punktene 0, $\pi/2$ og π med et polynom av grad 2. Bruk det interpolerende polynomet for å approksimere $\sin(\pi/4)$. Bruk feilformelen(side 851 i ed.8) til å finne en skranke for feilen i approksimasjonen.