TMA4125 Matematikk 4N

(ving 6 - Bglgeligningen - LF

Obligatoriske oppgaver

See Theorem 4.2 in the notes

Matlab:

%$se oving.5.m for kommentarer

x=0:.1:3;

t=0:p1/100:2*pi;

for j=1:length(t)
f=1/pi*sin(pi*t (J))*sin(pi*x)+1/ (4xpi)*sin(2+pi*t (J))*sin (2xpi*x);
plot (x, f)
axis ([0 3 —1.2 1.2])
pause (.03)

end

Python:

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

#jeg skjoenner ikke hvordan denne koden funker heller. det er jo den samme
som i oving5.py

fig, ax = plt.subplots|()

xdata, ydata = [], []

ax.set_xlabel (r's$xs")

ax.set_xlabel (r'Sys$')

ln, = plt.plot([], [], animated=True,label=r'Su\, (x,t)$') # skriv inn 'ro'
som tredje argument hvis du vil ha tilbake punkter i stedet for linjer.

def init () :
ax.set_x1lim (0, 3)
ax.set_ylim(—1, 1)
return 1n,

def update (frame) :
xdata=np.linspace (0, 2*np.pi, 128)
ydata=1l/np.pi*np.sin(np.pixframe)np.sin(np.pixxdata)+1/ (4dxnp.pi)*np.sin (2+*n
ln.set_data (xdata, ydata)
return 1n,

# Man kan endre hastigheten ved endre p interval—parameteren

ani = FuncAnimation(fig, update, frames=np.linspace (0, 2xnp.pi, 128),
interval=35,

init_func=init, blit=True)
plt.legend()
plt.show ()

o.pixframe
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We first find the solution of the general problem
Uy = CUgz, O0<x <L, t>0, (1)

by seperation of variables. Then we insert our special case of ¢ and L, boundary conditions
and initial conditions. Separation of variables turns the equation (1)) into

F(z)G"(t) = AF"(z)G(t).

Rearranging gives

F”(l‘) B G//(t)

F(z)  G(t)
Since this holds for all  and ¢, both sides must be equal to a constant k, so we have the
two equations

F'"—kF =0 (2)
G" — kG = 0. (3)

The function F.
We start by investigating the function F' given by .

Boundary conditions.

The types of boundary conditions we are concerned with are
u(0,t) = u(L,t) =0, (Dirichlet boundary conditions),
and

uz(0,t) = ugy(L,t) =0, (Neumann boundary conditions).

By inserting u(x,t) = F(x)G(t) into the boundary conditions, we get conditions on F:

F(z)|,_.o=0 and F(z)|,_; =0, (4)
and
F F
d— =0 and d— =0. (5)
dz |, dv |,_;

From earlier courses we know that there are three types of solutions of , depending on
whether k is positive, negative or zero:

1. If £ = 0, then F(z) = A + Bz for constants A and B. For the boundary conditions
in and to be satisfied, we must have A = B = 0 (trivial solution) and B = 0,
respectively. In the second case this yields a constant solution Fy = A.

2. If £ > 0, then
F(z) = CeVhr 4 De~Vhe

and
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Fl(z) = CVkeVre — D\/Ee_‘/h,

We see that the only way that the boundary conditions F(0) = F(L) = 0 or F'(0) =
F'(L) = 0 are fulfilled is if C = D = 0. This is the trivial solution, and is of no
interest.

3. If £ <0, then
F(x) = M cos(vV —kz) + N sin(v—kx).

and

F'(z) = —V/—kM sin(v—kz) + vV—EN cos(vV—kz).
Dirichlet boundary conditions.
In the case of , the boundary conditions yield
0=F(0) =M,
and further

nm

O:F(L):Nsin(\/—kL):\/—k:f, n=123,...

Thus we can write —
F,(xz) = N, sin(T), n=123,...

Neumann boundary conditions.
In the case of , the boundary conditions yield
0= F'(0) = V—kN,
which implies N = 0, and
0=F'(L) = vV—kMsinv—kL,

which implies /—k = nn/L forn =1,2,3,....

Thus we can write

F,(x) = Mncosn—zx, n=1223,...
Observation.
In both cases we have
2 2
nemw
k= 7R n=12,3,...

The function G.

With our new knowledge of k being either 0 (Neumann) or —n?72/L? (Dirichlet and
Neumann), the solutions of |3 are (again by what we know of ODEs from earlier courses)

nmct nmct
i + K, sin 72

Gn(t) = Jp, cos
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and
Go(t) = Jot + K.

Every non-trivial separable solution of the wave equation is thus of the form

t t
up(z,t) = Fp(2)Gp(t) = (An cos nzc + B, sin mlrjc > sin ? (Dirichlet conditions),
(6)

and

i + By, sin T ) o8 (Neumann conditions),

up(z,t) = F(2)Gp(t) = <An cos 7
(7)

nmct . mrct> NTT

forn=1,2,... and constants A,, = M,J, and B, = M, K,, or
uo(x,t) = Fo(x)Go(t) = Ao + Bot (Neumann conditions) (8)

for constants Ag = AJy and By = AK).

Throwback to linear algebra.

Since all u,, n =0,1,2,3,... solves the wave equation , any linear combination will also
solve . We show this by defining

N
)= cntin(z,t),
n=0

for arbitrary constants ¢, € R and N € N. The boundary conditions are trivially satisfied
for this linear combination (check this!). Furthermore,

N N
u(z,t) = Oy <8t<chun(m,t)>> = Z cn OOy, (z,t)
= chca Optn(z,t) = Oy ( (chun (x,t )) = Cugy(x,t),

where we have used that u,, solves and linearity of differentiation. We bravely conclude
that any solution of is given by

= Z Cnin (z, 1) (9)
n=0

where we have let N — co. Here u,, is given by (6] (Dirichlet), or (7) and (Neumann).

Observation.

Recall from linear algebra that whenever y, z € R™ solves the equation Ax = 0, for some
given matrix A € R"™*" then any linear combination of them, say ay + bz also solves the
equation:

A(ay + bz) = aAy + bAz = 0.
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In linear algebra the solutions of the equation Ax = 0 defines a subspace of R, V := {v €
R™ | Av = 0}. If this subspace has dimension &, then it has a basis of linearly independent

vectors {b1,...,b;} such that all v € V can be expressed as a linear combination of
bi,--- ,bi. As we have shown, we see similar behaviour for solutions of the wave equation
()-

Actually solving problem 3
Weput L=3and c=11in @ and obtain through @ and @

t) = Z Fo(z)Gp(t) = Z <An cos %ﬁt + B, sin n;)rt) sin % (10)
n=1

n=1

We use the general solution .

a) The first initial condition is
z(3 — x) = u(zx,0) ZA Smnmc

which shows that A,, is the n’th Fourier sine coefficient of (the odd periodic extension of)
the function f given by f(z) = z(3 — x), i.e.

9 3
An:S/O a:(3—x)sinngﬂdx
2 3 nrz]® 2 3 nme
=3 [—mx(?)—x)cosg}o—i—m/o (3—2x)cosTdm
=0
2 13 nrz]® 12 3 nmx
= {mr(?)—%:)smg]o—kw/o SlanfL‘
=0
36 nmwxl3 36 2. nodd
= — |— - = (1 —=(=1)") ={n'm
n37r3[ 573 }0 n37r3( (=1%) {O n even.

The exact same reasoning on the other initial condition gives that the B,’s must be the
Fourier sine coefficients for the zero function as

0 ou(z,0) T T ZB nrz o
=——"‘ = — By, sin —— sin — = 0.
ot 37" 3

n=1

Thus, B,, = 0 for all n. The general solution is therefore

72 1 2n—1)wt . (2n— D7
=— Z_: on 1) cos 3 sin 3

b) The same reasoning as in a) gives that now the A,’s are Fourier sine coefficients for
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the zero function, i.e. 0 = A; = Ay = .... The second initial condition yields
1 ou(z,0) —
sinmx — = sin 27z = M = nan sin 2%
2 ot — 3 3

o0

« . NTT . 1.

= E B, sin = = Sin 72 — o sin 2mx,
n=1

with B = %'B,. Hence, B are the Fourier sine coefficients of the function f(z) =
3

sin T — % sin 27x. As this function can be written on Fourier sine series with period L =

37z 1 . 6rx

f(x) = Sin? — 5811’17

we can extract the coefficients directly

5 n=3
_ * _ 1 _
n # 3, 6.

Thus,
1 1
u(z,t) = — sin(nt) sin(wx) — — sin(27t) sin(27z).
7r 4m
c) Let u(z,t) = ua(x,t) + up(x,t) be the sum of the solutions in part a and b. Then

u(z,0) = ua(z,0) + up(z,0) = (3 — z)
T

and du(z,0)  Oua(z,0) up(,0 1
u(z,0) = Ua(2, 0) ub(2,0) =gsin7r — - sin 27x.
ot ot ot
=0
Due to uniqueness, this is thus the solution satisfying the given boundary conditions

72 1 (2n —3 1)mt sin (2n —31)71:1:

1 1
+ = sin(7t) sin(mx) — e sin(27t) sin(27x).

Anbefalte oppgaver

See the [lecture notes
The general solution is given by @ with u,, given by and .

The allowed frequencies for the flute is given by sinusoidal time-varying part of the solution
of the wave equation, that is

wn:%, n=01,2,....
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With the speed of sound as in the exercise text (¢ = 343 m/s), a flute of length 0.5m
allows for the following frequencies

w1 A 2155571 wy ~ 430951, wy A~ 6464571, ...,

so the deepest frequency (its fundamental mode) is about 2136s~! (the unit is “seconds-
inverse”, also known as Hertz).

The frequencies listed here are so-called angular frequencies. Typically, the frequency is
the quantity of interest, and is defined by f, = w,/(27) = nc/(2L). The fundamental
frequency mode is then f; = 343 Hz.



