TMA4125 Matematikk 4N

(ving 7 - Varmelikningen - LF

Obligatoriske oppgaver

See the lecture notes.

Matlab:

%$se oving.5.m for kommentarer
x=0:.1:2;

t=0:pi/100:pi;

figure

for j=1l:length (t)
f=exp(—pi~ 2+t (J)/4) xsin(pixx/2);
plot (x, )
axis ([0 2 —1.2 1.21])
pause (.03)

end

Python:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

#samme kommoentar som oving 5 og 6
fig, ax = plt.subplots|()
ax.set_xlabel (r'$x$")
ax.set_xlabel (r'Sys")

xdata, ydata = [], []
In, = plt.plot([], I[1, animated=True,label=r'$u\, (x,t)$"') # skriv inn
som tredje argument hvis du vil ha tilbake punkter i stedet for linjer.

'ro!

def init () :
ax.set_x1lim (0, 2)
ax.set_ylim(—.5, 1.5)
return 1n,

def update (frame) :
xdata=np.linspace (0, 2, 128)
ydata=np.exp(—np.pi**2+xframe/4.0) *np.sin (np.pi*xdata/2)
ln.set_data (xdata, ydata)
return 1n,

# Man kan endre hastigheten ved aa endre paa interval—-parameteren

ani = FuncAnimation (fig, update, frames=np.linspace(0, 2, 128),interval=30,
init_func=init, blit=True)

plt.legend()

plt.show ()
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Separation of variables as given in the text turns the given (heat) equation into
F(x)G'(t) = F"(2)G(t).

Rearranging this equation gives

Fiz) G'(t)

F(z) — G(t)
Since this holds for all  and ¢, both sides must be equal to a constant k, so we have the
two equations

F' —kF =0 (1)
G'— kG =0. (2)
As the boundary conditions hold for all ¢, we have (by inserting u(z,t) = F(x)G(t) into

the boundary conditions)
F(0)=0 and F(2)=0 (3)

Let us first study . From earlier courses we know that there are three types of solutions,
depending on whether k is positive, negative or zero:

1. If £ = 0, then F(z) = A + Bz for constants A and B. For the boundary conditions
in @ to be satisfied, we must have A = B = 0, i.e. the trivial solution, which is of
no interest.

2. If k > 0, then
F(z) = CeVke 4 pe~VEr,

Since

0=F(0)=C+D, and 0=F(2)=Ce?V* De 2k
we get C' = D = 0, and thus the trivial solution once more.

3. If £ <0, then
F(z) = M cos(V —kx) + N sin(v —kx).

Write © = v/ —k to simplify notation from here on. The boundary conditions then
become

and (since M = 0)

Hence, pn = nm/2 for n € Z.
Solutions of are thus of the form

F,(x) :anin?, n=12 ...

where we can restrict ourselves to n > 1 as sine is antisymmetric.

With k = —p2, has the solution (Calculus 1 curriculum as the ODE is separable)

Gn(t) = J, ekt = Jne_”2"2t/4.

Every non-trivial separable solution of the wave equation is thus of the form

nmx

up(z,t) = Fp(2)Gp(t) = Bpe ™"t gin 5
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for n = 1,2,... and constants B, = N,J,. By superposition, the general solution is
therefore

o0
u(z,t) =Y Bue™™ " sin ?
n=1

as

T 0<zx<1
—r4+2 1<x<2

(@) = u(w.0) = 3 Bsin ™22, with f@;):{

the coefficients B,, will be the Fourier sine coefficients of (the odd extension of) f(x). The
coefficients are thus found by

9 [2
Bn:2/0 f(:n)sin?d:r
! nm 2 nm
:/ a:sin2dx—|—/ (2—x)sin7d$

0 1
[ 2z nmq ! 2 1 nwx

2 nmw 4 [ mrxr 2 nm 4 { nﬂfcr
nmw 2 2
n—1
8(—1) 2z
nr isinﬁz n2m2

n odd

0 n even.

Thus,
8 o= (=)™ 1 _ o 2 . 2n—1)mx
- ((anl)2efr(2n 2e/4 g, 2)
n=1
The steady state solution u(z,y) satisfies the Laplace equation
Pu 0%u
o+ =0
or? = 0y
Using separation of variables of the form u(z,y) = F(z)G(y), the Laplace equation turns
into
F()G"(y) = —F"()G(y).
Rearranging this equation gives
Flx)  G"(y)

F(z) Gy

Since this holds for all z and y, both sides must be equal to a constant k, so we have the

two equations
F'—kF =0 (4)
G"+ kG =0. (5)

As the boundary conditions (perfectly insulation, see Figure (1)

ou ou
=0 and 9z =0

Ox =0 Tlg=a
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u(z,a) = f(x)

ou 0 du =0

Bz lz=0 — oz lz=a

u(z,0) =0 a

Figur 1: Task 3: Domain of the Laplace equation with boundary conditions.

holds for all y, we have (by inserting u(z,y) = F(2)G(y) into the boundary conditions)
F'(0)=0 and F'(a)=0 (6)

As before, we start by solving subject to the boundary conditions @ From earlier
courses we know that there are three types of solutions, depending on whether k is positive,
negative or zero:

1. If k =0, then F(z) = A+ Bz for constants A and B. For the boundary conditions in
(6) to be satisfied, we must have B = 0, i.e. we have the constant solution F(z) = A.

2. If £ > 0, then
F(z) = CeVhr 4 De~Vhe,

and so

F'(z) = CVEkeV* — DVke Vhe,

Since
0=F'(0)=CvVk—DVk, and 0=G'(a)=CVkeV* — DVke *VF

we get C' = D = 0, and thus the trivial solution which is of no interest.

3. If £ <0, then
F(z) = M cos(V—kz) + N sin(vV—kz).

and so

F'(z) = —Mv/—ksin(v/—kz) + NV —k cos(v/—kzx).

Write © = v/ —k to simplify notation from here on. The boundary conditions then
imply

0=G'(0) = NV—k

and (since N =0)
0= F'(a) = —M+v/—ksinau.

Hence, pn = nm/a for n € 7Z.
Solutions of are thus of the form

F,(x) :Mncosn%:x, n=0,1,2,...
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where we can restrict ourselves to n > 0 as cosine is symmetric.

As the boundary conditions (see Figure|l)) u(x,0) = 0 holds for all z, we have (by inserting
u(z,y) = F(z)G(y) into the boundary condition)

G(0)=0 (7)

If k = 0 then () has solution Go(y) = Jo+ Koy, and the boundary condition in (7)) implies
that Jo = 0. That is, we have the linear solution Gy(y) = Koy.

With k = —p2, has the solution (again curriculum from previous courses)
Gn(y) = Jpsinh py + K, cosh py.
The boundary condition yields
0=Gn(0) =K,
Every non-trivial separable solution of the wave equation is thus of the form

un(z,y) = Fp(z)Gn(y) = Ay cos L sinh Y

a a

for n = 1,2,... and constants A,, = M,J,, or up(z,y) = Apy (with Ay = AKjy). By
superposition, the general solution is therefore

u(z,y) = Agy—i—ZA cos 0 gin hmry

n=1 a
As
f(z) =u(z,a) = Ao—i-ZA*cos—
where
4 inh Ay >1
f(x) = cos T —cos 7% and A* ={°" () "=
6 a Aoa n=20

the coefficients A; the coefficients can be extracted as
1 n=4
An = :
0 otherwise.

1 —
A, = {sinhmr n=4

Hence,

0 otherwise.

The final solution is therefore (with a = 24)

1 T LY 7Ty
cos — sin
sinh 47 6 6

u(xay) =

Python:
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from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

#x— og y—aksen
x = np.linspace (0, 2, 128)
t = np.linspace(0, 2, 128)

#ytreprodukt av x— og y—aksen. surf trenger dette for aa funke.
X, T=np.meshgrid(x, t)

#funksjonsverdiene
u=np.multiply (np.exp(—np.pi**2+T/4.0),np.sin(np.pi*xX/2))

#lage plot. et par av disse kommandoene vet jeg ikke hva gjor, men Jjeg fant
dem paa nettet
fig = plt.figure()

ax = fig.gca(projection='3d")
surf = ax.plot_surface (X, T, u, cmap=cm.coolwarm,
linewidth=0, antialiased=False)

#korrekt utsnitt av xy—planet
plt.axis([0,2,0,2])

# navn paa aksene
plt.xlabel (r'sxS$")
plt.ylabel (r'sts")
ax.set_zlabel (r'su(x,t)$")

#vise plot
plt.show ()

Anbefalte oppgaver

We want to solve the Schrodingers equation given by

Up = tUgy for t >0, —00 < x < +00

u(z,0) = g(z) on —oo <z < +00.
Note that this equation is on the form of the heat equation

U = gy for t >0, —00 < & < +00 ()

u(z,0) = g(z) on —oo <z < 400.

2

where ¢ = i. We have c = ¢ Vi by complex analysis. Recall the solution formula for

®

. (;vfu)Q

1 oo
u(x,t) = M/ g(v)e 4t dv.
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We get
_(a=1)?
uy(z,t) / %t dv,
26 y \/
and
ug(x,t) = / (147‘:)2 dv
2 T ¢ *
’ 2654 Vs
Note that u; = €™ ug, so we can throw away the solution us and describe everything in
terms of u;. Finally, the solution of is given by
_(e—v)?
u(z,t) / it du.
f

a) We are going to take the Fourier transform with respect to the z-variable, in the end
transforming the PDE into an ODE (easier to solve!). First, we recall the relation

2
ﬁ{g;g} = —w? F{u} = —w?

U.
have

Moreover, assuming we may interchange the order of differentiation and integration, we

AR
0y?

) 2
\/T eflxw dr = 9
™

/ u(z,y)e ¥ dx = @
o Var )oY o>
Thus, using the linearity of Fourier transform , taking the Fourier transform in x of
0*u  0*u
—_—t — = 0
0x?  Oy?
yields the ODE

we then have solutions of the form

(10)
b) The ordinary differential equation in (10)) has the characteristic polynomial A\? — w? = 0
with solutions A = £|w|. Recall from theory of linear ordinary differential equations that

a(w,y) = C(w)e™ "W 4 D(w)eW (11)
Assuming we can interchange the order of the limit and integration, we have (using the
last boundary condition)

lim 4(w,y) = lim ——
Y—00

.’E —izw d‘,r
Y—=00 /27 / y

lim u(z,y)e " dr =0
\/27T/ooy_>oo

=0
For this reason, we must have D(w) = 0 in (L1). The solution of is therefore

a(w,y) = C(w)e™ "l
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for some function C(w).

c) Since
u(@,0) = fz) = a(w,0)= f(w)
we get
f(w) = a(w,0) = C(w) - e 0 = C(w)
That is,

Clw) = flw) = jz? / " fe)e v de,

d) Applying the inverse Fourier transform (w.r.t. w) of both sides of yields
1 RN ;
_ —|wly Jiwz d
u(z,y) = — w)e e w.
@)= o= [
e) Recall the Fourier transform of a convolution
F{f +g)w) = Varfw)iw) where (frg)e)= [ Ftlga 1)t

Using §(w) = e~ 1*!¥ and the fact that

1 a>0 [me vl
T 2 =z
7 {x2 + a2} \/g a ’
—lwly 1 1
F S =TT D) =
2y 2y ety

we get

So further
(+ @) = FH {VErfw)gu)} = [ Fwpe e dw — VEru(ay),

and

That is,



