
TMA4125 Matematikk 4N

Øving 7 - Varmelikningen - LF

Obligatoriske oppgaver

1 See the lecture notes.

2 Matlab:

%se oving 5.m for kommentarer
x=0:.1:2;
t=0:pi/100:pi;

figure

for j=1:length(t)
f=exp(−piˆ2*t(j)/4)*sin(pi*x/2);
plot(x,f)
axis([0 2 −1.2 1.2])
pause(.03)

end

Python:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

#samme kommoentar som oving 5 og 6
fig, ax = plt.subplots()
ax.set xlabel(r'$x$')
ax.set xlabel(r'$y$')

xdata, ydata = [], []
ln, = plt.plot([], [], animated=True,label=r'$u\, (x,t)$') # skriv inn 'ro' ...

som tredje argument hvis du vil ha tilbake punkter i stedet for linjer.

def init():
ax.set xlim(0, 2)
ax.set ylim(−.5, 1.5)
return ln,

def update(frame):
xdata=np.linspace(0, 2, 128)
ydata=np.exp(−np.pi**2*frame/4.0)*np.sin(np.pi*xdata/2)
ln.set data(xdata, ydata)
return ln,

# Man kan endre hastigheten ved aa endre paa interval−parameteren
ani = FuncAnimation(fig, update, frames=np.linspace(0, 2, 128),interval=30,

init func=init, blit=True)
plt.legend()
plt.show()

https://www.math.ntnu.no/emner/TMA4125/2019v/notater/05-varmelikningen.pdf
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3 Separation of variables as given in the text turns the given (heat) equation into

F (x)G′(t) = F ′′(x)G(t).

Rearranging this equation gives
F ′′(x)

F (x)
=
G′(t)

G(t)
.

Since this holds for all x and t, both sides must be equal to a constant k, so we have the
two equations

F ′′ − kF = 0 (1)

G′ − kG = 0. (2)

As the boundary conditions hold for all t, we have (by inserting u(x, t) = F (x)G(t) into
the boundary conditions)

F (0) = 0 and F (2) = 0 (3)

Let us first study (4). From earlier courses we know that there are three types of solutions,
depending on whether k is positive, negative or zero:

1. If k = 0, then F (x) = A + Bx for constants A and B. For the boundary conditions
in (6) to be satisfied, we must have A = B = 0, i.e. the trivial solution, which is of
no interest.

2. If k > 0, then

F (x) = Ce
√
kx +De−

√
kx.

Since
0 = F (0) = C +D, and 0 = F (2) = Ce2

√
k +De−2

√
k

we get C = D = 0, and thus the trivial solution once more.

3. If k < 0, then
F (x) = M cos(

√
−kx) +N sin(

√
−kx).

Write µ =
√
−k to simplify notation from here on. The boundary conditions then

become
0 = F (0) = M

and (since M = 0)
0 = F (2) = N sin 2µ.

Hence, µ = nπ/2 for n ∈ Z.

Solutions of (4) are thus of the form

Fn(x) = Nn sin
nπx

2
, n = 1, 2, . . .

where we can restrict ourselves to n ≥ 1 as sine is antisymmetric.

With k = −µ2, (5) has the solution (Calculus 1 curriculum as the ODE is separable)

Gn(t) = Jnekt = Jne−π
2n2t/4.

Every non-trivial separable solution of the wave equation is thus of the form

un(x, t) = Fn(x)Gn(t) = Bne−π
2n2t/4 sin

nπx

2
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for n = 1, 2, . . . and constants Bn = NnJn. By superposition, the general solution is
therefore

u(x, t) =
∞∑
n=1

Bne−π
2n2t/4 sin

nπx

2

as

f(x) = u(x, 0) =
∞∑
n=1

Bn sin
nπx

2
, with f(x) =

{
x 0 ≤ x ≤ 1

−x+ 2 1 ≤ x ≤ 2

the coefficients Bn will be the Fourier sine coefficients of (the odd extension of) f(x). The
coefficients are thus found by

Bn =
2

2

∫ 2

0
f(x) sin

nπx

2
dx

=

∫ 1

0
x sin

nπx

2
dx+

∫ 2

1
(2− x) sin

nπx

2
dx

=

[
− 2x

nπ
cos

nπx

2

]1
0

+
2

nπ

∫ 1

0
cos

nπx

2
dx

+

[
−2(2− x)

nπ
cos

nπx

2

]2
1

− 2

nπ

∫ 2

1
cos

nπx

2
dx

= − 2

nπ
cos

nπ

2
+

4

n2π2

[
sin

nπx

2

]1
0

+
2

nπ
cos

nπ

2
− 4

n2π2

[
sin

nπx

2

]2
1

=
4

n2π2
sin

nπ

2
+

4

n2π2
sin

nπ

2
=

8(−1)
n−1
2

n2π2 n odd

0 n even.

Thus,

u(x, t) =
8

π2

∞∑
n=1

(−1)n−1

(2n− 1)2
e−π

2(2n−1)2t/4 sin
(2n− 1)πx

2
.

4 The steady state solution u(x, y) satisfies the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

Using separation of variables of the form u(x, y) = F (x)G(y), the Laplace equation turns
into

F (x)G′′(y) = −F ′′(x)G(y).

Rearranging this equation gives

F ′′(x)

F (x)
= −G

′′(y)

G(y)
.

Since this holds for all x and y, both sides must be equal to a constant k, so we have the
two equations

F ′′ − kF = 0 (4)

G′′ + kG = 0. (5)

As the boundary conditions (perfectly insulation, see Figure 1)

∂u

∂x

∣∣∣∣
x=0

= 0 and
∂u

∂x

∣∣∣∣
x=a

= 0
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y

x
a

a
u(x, a) = f(x)

u(x, 0) = 0

∂u
∂x

∣∣
x=0

= 0 ∂u
∂x

∣∣
x=a

= 0

Figur 1: Task 3: Domain of the Laplace equation with boundary conditions.

holds for all y, we have (by inserting u(x, y) = F (x)G(y) into the boundary conditions)

F ′(0) = 0 and F ′(a) = 0 (6)

As before, we start by solving (4) subject to the boundary conditions (6). From earlier
courses we know that there are three types of solutions, depending on whether k is positive,
negative or zero:

1. If k = 0, then F (x) = A+Bx for constants A and B. For the boundary conditions in
(6) to be satisfied, we must have B = 0, i.e. we have the constant solution F (x) = A.

2. If k > 0, then

F (x) = Ce
√
kx +De−

√
kx,

and so
F ′(x) = C

√
ke
√
kx −D

√
ke−

√
kx.

Since

0 = F ′(0) = C
√
k −D

√
k, and 0 = G′(a) = C

√
kea
√
k −D

√
ke−a

√
k

we get C = D = 0, and thus the trivial solution which is of no interest.

3. If k < 0, then
F (x) = M cos(

√
−kx) +N sin(

√
−kx).

and so
F ′(x) = −M

√
−k sin(

√
−kx) +N

√
−k cos(

√
−kx).

Write µ =
√
−k to simplify notation from here on. The boundary conditions then

imply
0 = G′(0) = N

√
−k

and (since N = 0)
0 = F ′(a) = −M

√
−k sin aµ.

Hence, µ = nπ/a for n ∈ Z.

Solutions of (4) are thus of the form

Fn(x) = Mn cos
nπx

a
, n = 0, 1, 2, . . .
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where we can restrict ourselves to n ≥ 0 as cosine is symmetric.

As the boundary conditions (see Figure 1) u(x, 0) = 0 holds for all x, we have (by inserting
u(x, y) = F (x)G(y) into the boundary condition)

G(0) = 0 (7)

If k = 0 then (4) has solution G0(y) = J0+K0y, and the boundary condition in (7) implies
that J0 = 0. That is, we have the linear solution G0(y) = K0y.

With k = −µ2, (4) has the solution (again curriculum from previous courses)

Gn(y) = Jn sinhµy +Kn coshµy.

The boundary condition (7) yields

0 = Gn(0) = Kn

Every non-trivial separable solution of the wave equation is thus of the form

un(x, y) = Fn(x)Gn(y) = An cos
nπx

a
sinh

nπy

a

for n = 1, 2, . . . and constants An = MnJn, or u0(x, y) = A0y (with A0 = AK0). By
superposition, the general solution is therefore

u(x, y) = A0y +
∞∑
n=1

An cos
nπx

a
sinh

nπy

a
.

As

f(x) = u(x, a) = A∗0 +
∞∑
n=1

A∗n cos
nπx

a

where

f(x) = cos
πx

6
= cos

4πx

a
and A∗n =

{
sinh(nπ)An n ≥ 1

A0a n = 0

the coefficients A∗n the coefficients can be extracted as

A∗n =

{
1 n = 4

0 otherwise.

Hence,

An =

{
1

sinhnπ n = 4

0 otherwise.

The final solution is therefore (with a = 24)

u(x, y) =
1

sinh 4π
cos

πx

6
sinh

πy

6
.

5 Python:
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from mpl toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

#x− og y−aksen
x = np.linspace(0, 2, 128)
t = np.linspace(0, 2, 128)

#ytreprodukt av x− og y−aksen. surf trenger dette for aa funke.
X,T=np.meshgrid(x,t)

#funksjonsverdiene
u=np.multiply(np.exp(−np.pi**2*T/4.0),np.sin(np.pi*X/2))

#lage plot. et par av disse kommandoene vet jeg ikke hva gjor, men jeg fant ...
dem paa nettet

fig = plt.figure()

ax = fig.gca(projection='3d')
surf = ax.plot surface(X, T, u, cmap=cm.coolwarm,

linewidth=0, antialiased=False)

#korrekt utsnitt av xy−planet
plt.axis([0,2,0,2])

# navn paa aksene
plt.xlabel(r'$x$')
plt.ylabel(r'$t$')
ax.set zlabel(r'$u(x,t)$')

#vise plot
plt.show()

Anbefalte oppgaver

1 We want to solve the Schrödingers equation given by{
ut = iuxx for t > 0,−∞ < x < +∞
u(x, 0) = g(x) on −∞ < x < +∞.

(8)

Note that this equation is on the form of the heat equation{
ut = c2uxx for t > 0,−∞ < x < +∞
u(x, 0) = g(x) on −∞ < x < +∞.

(9)

where c2 = i. We have c = e
πi
4 ∨ e

5πi
4 by complex analysis. Recall the solution formula for

(9)

u(x, t) =
1

2c
√
πt

∫ ∞
−∞

g(ν)e−
(x−ν)2

4c2t dν.
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We get

u1(x, t) =
1

2e
πi
4

√
πt

∫ ∞
−∞

g(ν)e−
(x−ν)2

4it dν,

and

u2(x, t) =
1

2e
5πi
4

√
πt

∫ ∞
−∞

g(ν)e−
(x−ν)2

4it dν.

Note that u1 = eπiu2, so we can throw away the solution u2 and describe everything in
terms of u1. Finally, the solution of (8) is given by

u(x, t) =
1

2e
πi
4

√
πt

∫ ∞
−∞

g(ν)e−
(x−ν)2

4it dν.

2 a) We are going to take the Fourier transform with respect to the x-variable, in the end
transforming the PDE into an ODE (easier to solve!). First, we recall the relation

F

{
∂2u

∂x2

}
= −w2 F{u} = −w2û.

Moreover, assuming we may interchange the order of differentiation and integration, we
have

F

{
∂2u

∂y2

}
=

1√
2π

∫ ∞
−∞

∂2u

∂y2
e−ixw dx =

∂2

∂y2
1√
2π

∫ ∞
−∞

u(x, y)e−ixw dx =
∂2û

∂y2
.

Thus, using the linearity of Fourier transform , taking the Fourier transform in x of

∂2u

∂x2
+
∂2u

∂y2
= 0

yields the ODE
∂2û

∂y2
− w2û = 0. (10)

b) The ordinary differential equation in (10) has the characteristic polynomial λ2 − w2 = 0
with solutions λ = ±|w|. Recall from theory of linear ordinary differential equations that
we then have solutions of the form

û(w, y) = C(w)e−|w|y +D(w)e|w|y (11)

Assuming we can interchange the order of the limit and integration, we have (using the
last boundary condition)

lim
y→∞

û(w, y) = lim
y→∞

1√
2π

∫ ∞
−∞

u(x, y)e−ixw dx

=
1√
2π

∫ ∞
−∞

lim
y→∞

u(x, y)︸ ︷︷ ︸
=0

e−ixw dx = 0

For this reason, we must have D(w) = 0 in (11). The solution of (10) is therefore

û(w, y) = C(w)e−|w|y (12)
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for some function C(w).

c) Since
u(x, 0) = f(x) ⇒ û(w, 0) = f̂(w)

we get
f̂(w) = û(w, 0) = C(w) · e−|w|·0 = C(w).

That is,

C(w) = f̂(w) =
1√
2π

∫ ∞
−∞

f(x)e−iwx dx.

d) Applying the inverse Fourier transform (w.r.t. w) of both sides of (12) yields

u(x, y) =
1√
2π

∫ ∞
−∞

f̂(w)e−|w|yeiwx dw.

e) Recall the Fourier transform of a convolution

F{f ∗ g}(w) =
√

2πf̂(w)ĝ(w) where (f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt.

Using ĝ(w) = e−|w|y and the fact that

F

{
1

x2 + a2

}
a>0
=

√
π

2

e−a|ω|

a
,

we get

F−1

{√
π

2

e−|w|y

y

}
= F−1

{√
π

2

1

y
ĝ(w)

}
=

1

x2 + y2

⇒ g(x) =

√
2

π

y

x2 + y2
.

So further

(f ∗ g)(x) = F−1
{√

2πf̂(w)ĝ(w)
}

=

∫ ∞
−∞

f̂(w)e−|w|yeiwx dw =
√

2πu(x, y),

and

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt =

√
2

π

∫ ∞
−∞

f(t)
y

(x− t)2 + y2
dt.

That is,

u(x, y) =
1

π

∫ ∞
−∞

f(t)
y

(x− t)2 + y2
dt.


