Assignment 2: Laplace Transform II

January 20, 2020

Mandatory

1

Let f and F be functions with F' = f. Find the convolution $f \star g$, when g is the function

a

 $g(t) = \delta(t-a), \quad a > 0.$ \mathbf{b} $g(t) = u(t-a), \quad a > 0.$

$\mathbf{2}$

For k > 0, define the function

$$w_k(t) = \begin{cases} kt, & 0 \le t \le 1/k, \\ 1, & \text{else.} \end{cases}$$

a

Find the Laplace transform of w_k .

\mathbf{b}

For k > 0, define the function

$$g_k(t) = \begin{cases} k, & 0 \le t \le 1/k, \\ 0, & \text{else.} \end{cases}$$

Use the Laplace transform to show that $y(t) = w_k(t)$ solves the initial-value problem

$$y'(t) = g_k(t), \quad y(0) = 0.$$

С

What functions do w_k and g_k converge to as $k \to \infty$?

3

Solve the initial-value problems

a $y'' + 5y' + 6y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = -1.$

 \mathbf{b}

 $y'(t) - \int_0^t (t - \tau) y(\tau) d\tau = t, \quad y(0) = 1.$

Recommended exercises

$\mathbf{4}$

Derive the formulas for s-shift and t-shift.

$\mathbf{5}$

Find the inverse Laplace transforms for

a $\frac{1}{s^2(s^2+1)}$ b $\frac{s}{s^2+2s+1}$ c $\frac{2s}{(s^2+1)^2}$ d $(s-3)^{-5}$ 6 Find the Laplace transforms for

a

 $f(t) = (u(t) - u(t - \pi))\cos t$

 \mathbf{b}

$$f(t) = u(t-a)t^2, \quad a > 0$$

$$f(t) = u(t) + 2\sum_{i=1}^{\infty} (-1)^{i} u(t - ia), \quad a > 0$$

$\mathbf{7}$

Solve the equations

a $y'' + y = u(t - \pi)$ y(0) = 0, y'(0) = 0**b**

$$y - y \star t = t$$

8

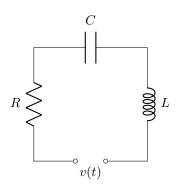
The current i(t) in the circuit below is given by the equation below

$$Li'(t) + Ri(t) + \frac{1}{C} \int_0^t i(\tau) d\tau = v(t).$$
 (1)

Assume i(0) = i'(0) = 0, $R = 4 \Omega$, L = 1 H, C = 0.05 F and

$$v(t) = \begin{cases} 34e^{-t} & \text{if } 0 \text{jt}\text{j}4\\ 0 & \text{v} & \text{else.} \end{cases}$$

Find the current i.



9

a

Detail the calculation showing that $\mathcal{L}(t^n)(s) = \frac{\Gamma(n+1)}{s^{n+1}}$, where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$, (x > 0), is the classical Gamma-function.

\mathbf{b}

Show that $\Gamma(x+1) = x\Gamma(x)$ and calculate $\Gamma(\frac{2k+1}{2})$, for k being a non-negative integer.

Show that $\Gamma(1/2) = 2 \int_0^\infty e^{-p^2} dp$.

 \mathbf{d}

С

Prove that $2 \int_0^\infty e^{-p^2} dp = \sqrt{\pi}$.

 \mathbf{e}

Combine part b), c) and d) to calculate the Laplace transform $\mathcal{L}(\frac{2}{\sqrt{\pi}}\int_0^{\sqrt{t}}e^{-p^2}dp)$. Hint (at least three ways): 1. Expanding the exponential e^{-p^2} by using $e^x = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots$; 2. Use definition of Laplace transform and two variables calculus; 3. Compute derivative of $\int_0^{\sqrt{t}} e^{-p^2} dp$ then use $\mathcal{L}(f')(s) = sF(s) - f(0)$.