

TMA4125 Calculus 4N Spring 2020

> Exercise set 8 Nonlinear equations

All necessary functions in Python can be found in the Jupyter notebook NonLinear-Equations.ipynb.

Mandatory exercises

1 Given the equation $f(x) = e^x + x^2 - x - 4 = 0$.

a) Show using theory that the function f has a unique root r in the interval [1, 2]. Additionally, plot the function f is the interval [1, 2] and find an approximation of r by looking at the graph.

Use Newton's method to find r, and choose an initial value from the graph above. Do a couple of iterations of the algorithm on paper. Find an exact solution by using the function **newton** in the Jupyter notebook.

b) The equation f(x) = 0 can be written on the form x = g(x) with for example

i)
$$g(x) = \ln(4 + x - x^2)$$

ii) $g(x) = \sqrt{-e^x + x + 4}$
iii) $g(x) = e^x + x^2 - 4$

For each of these functions we can make a fixed point scheme $x_{n+1} = g(x_n)$.

Test the three schemes numerically by using the function **fixpunkt**, and see which scheme converges. Use $x_0 = 1.5$, but we encourage you to experiment with different initial values. Use the statement on fixed-point iterations to explain the result.

Hint: Plot the functions g(x) and g'(x). If necessary, choose a different interval [a, b] containing r.

For those schemes that converges, estimate the number of iterations necessary to get an accuracy of 10^{-6} . Check the answer numerically. (The answer depends on the interval you choose, so there is no definite answer.)

- **2** a) Let g(x) be a continuous function with continuous derivatives on (a, b) and suppose that it has an inverse $g^{-1}(x)$. Show that if $r \in (a, b)$ is a fixed-point of g(x), then r is also a fixed-point of $g^{-1}(x)$.
 - b) Let $r \in (a, b)$ be a fixed-point of g(x). Show that if |g'(r)| > 1, then $|(g^{-1})'(r)| < 1$.

Using the convergence theorem of fixed-point iteration, we now know that if the algorithm does not converge for g(x), then it will converge for $g^{-1}(x)$ if one takes x_0 sufficiently close to r.

c) With this in mind, use fixed-point iteration to find an approximation to the solution r of the equation $x = \arccos(x)$.

3 Use Newton's method to find $\sqrt[3]{7}$.

- a) Write down the iteration scheme, and perform the first few iterations by hand, using $x_0 = 1$.
- b) Confirm your results by using the function **newton** in the Jupyter notebook.

Recommended exercises

a) Compute 3 iterations by hand of Newton's method to approximate a solution to the system of equations

$$x^2 + y^2 = 4$$
$$xy = 1$$

starting with $x_0 = 2, y_0 = 0$.

- b) Find an approximation to the solution by using the function **newton_sys**. You can also use this to confirm that your hand calculations were correct.
- c) Use newton_sys to solve the slightly perturbed system

$$x^2 + y^2 = 2$$
$$xy = 1$$

with the same initial values. How does the method behave now? Explain the results.