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March 23, 2020

[ ]: from IPython.core.display import HTML
def css_styling():

try:
with open("tma4125.css", "r") as f:

styles = f.read()
return HTML(styles)

except FileNotFoundError:
pass #Do nothing

# Comment out next line and execute this cell to restore the default notebook␣
↪→style

css_styling()

1 Exercises 10
In this exercise set we will construct and analyze quadrature rules. For guidance on quadrature
rules, please read the lecture notes from March 19’th. Make sure to run the code below to get all
the important modules, and to make the plots look nice.

[ ]: %matplotlib inline

from numpy import *
from matplotlib.pyplot import *
from math import factorial
newparams = {'figure.figsize': (8.0, 4.0), 'axes.grid': True,

'lines.markersize': 8, 'lines.linewidth': 2,
'font.size': 14}

rcParams.update(newparams)

1.1 1) Analyzing the composite Simpson’s rule
In this exercise we will repeat the analysis from March 19’th, applied to Simpson’s rule. Simpson’s
rule is defined as

S[f ](xi−1, xi) =
h

6
(f(xi−1 + 4f(xi−1/2) + f(xi))

where h = xi − xi−1 and xi−1/2 =
xi−1+xi

2 .

a)

1



Show that the resulting composite Simpson’s rule is given by

∫ b

a
f dx ≈ CSR[f ]([xi−1, xi]

m
i=1) =

h
6 [f(x0) + 4f(xx1/2

) + 2f(x1) + 4f(x3/2) + 2f(x2) + . . .

+ 2f(xm−1) + 4f(xxm−1/2
) + f(xm)].

Solution:

b) Implement the composite Simpson’s rule. Use this function to compute an approximate value
of integral

I(0, 1) =

∫ 1

0
cos

(π
2
x
)
=

2

π
= 0.636619 . . . .

for m = 4, 8, 16, 32, 64 corresponding to $ h = 2^{-2}, 2^{-3}, 2^{-4}, 2^{-5}, 2^{-6}$. Tabulate
the corresponding quadrature errors I(0, 1)−Q(0, 1). What do you observe? How does it compare
to the composite trapezoidal rule?

[ ]: #Write solution here

c) Recall that the error of Simpson’s rule on a single interval is given by

|I[f ](a, b)− S[f ](a, b)| = −(b− a)5

2880
f (4)(ξ)

for some ξ ∈ [a, b].

Use this to show that the error of the composite Simpson rule can be bounded by

|I[f ]− CSR[f ]| ⩽ M4

2880

(b− a)5

m4
=

M4

2880
h4(b− a) (3)

where M4 = maxξ∈[a,b] |f (4)(ξ)|.

Solution:

1.2 2) Gaussian Quadrature
In this exercise we will construct a Gaussian quadrature rule with 3 nodes. We will take it step by
step, so don’t worry if you do not feel like an expert on Gaussian quadrature. For more information
on Gaussian quadrature rules, please refer to the extra lecture uploaded on March 23.

To make your life easy, we will use the sympy python module for symbolic mathematics to perform
tasks such as (symbolic) integration and root finding of low order polynoms. In particular look at
integrate and solve submodules.

The first step in constructing a Gaussian quadrature is finding the correct orthogonal polynomial.
The nodes of the quadrature rule will be the roots of some polynomial. Since we are looking
for 3 nodes, this means that the polynomial should have 3 roots, and hence we are looking for a
third-order polynomial.
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https://docs.sympy.org/latest/index.html
https://docs.sympy.org/latest/modules/integrals/integrals.html
https://docs.sympy.org/latest/modules/solvers/solvers.html


The polynomial, call it p3, should be orthogonal on the interval [−1, 1] to all polynomials of order
2 or less. We now create this polynomial.

Start with the 4 polynomial “basis” functions

ϕ0 = 1, ϕ1 = x, ϕ2 = x2, ϕ3 = x3.

Remember that on the interval [−1, 1] we have the inner poduct

(p, q) =

∫ 1

−1
p(x) q(x)dx

and the norm

∥p∥ =

(∫ 1

−1
p(x)2 dx

)1/2

.

We can now construct orthogonal polynomials by using Gram-Schmidt orthogonalization.

pk = ϕk −
k−1∑
j=0

(ϕk, pj)

∥pj∥2
pj

We start out by setting p0 = 1. In order to calculate p1 we first need to calculate

(ϕ1, p0) =

∫ 1

−1
ϕ1(x) p0(x)dx =

∫ 1

−1
x · 1dx =

[
x2

2

]1
−1

= 0.

We also need to calculate

∥p0∥2 =
∫ 1

−1
p0(x)

2 dx =

∫ 1

−1
1 · dx = 2.

Therefore,
p1 = ϕ1 −

(ϕ1, p0)

∥p0∥2
p0 = ϕ1 −

0

2
· p0 = ϕ1 = x.

a)

Use Gram-Schmidt orthogonalization to construct p2 and p3.

Solution:

We can use the Python package SymPy to check our calculations. The code below helps you by
defining the inner product and shows how to define polynomials.

[ ]: from sympy.abc import x
from sympy import integrate

a=-1
b=1
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#Define the inner poduct
def scp(p,q):

return integrate(p*q, (x, a, b))

#Define polynomials
p0 = 1
p1 = x

#Calculate the inner product and print it.
print(scp(p0,p1))

b) Use the function scp to check your calculations of the inner products from the previous task.

[ ]: from sympy.solvers import solve
#Write solution here

c) Find the 3 roots of p3 both via pen and paper and verify your results using the sympy module.

Pen and paper hint: You probably already see what one of the roots will be.

Solution:

Python hint: Import the solve from sympy (Have a look at the solve submodules.)

[ ]: from sympy.solvers import solve
# Insert your code here

d)

We call the three roots x1 = −
√

3
5 , x2 = 0, x3 =

√
3
5 .

Construct the three Lagrange polynomials L1, L2, L3 satisfying Li(xj) = δij , that is

Li(xj) =

{
1, i = j,

0, i ̸= j.

Then calculate the weights

wi =

∫ 1

−1
Li(x)dx.

Hint: You can use the SymPy function integrate to check your calculations.

Solution:

e)

Finally, write down the quadrature rule on the form

GQR[f ](−1, 1) =

n∑
j=1

wjf(xj).
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https://docs.sympy.org/latest/modules/solvers/solvers.html


and check that this Gaussian quadrature rule has degree of exactness equal to 5.

Hint: Use the QR function from the SimpleQuadrature.ipynb notebook.

Solution:
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