
TMA4125 Exercise Set 11: Numerical Methods for ODEs

Exercise set 11: Numerical Methods for ODEs

André Massing

Apr 14, 2020

The Python codes for this note are given in ode.py.

As always, we start by calling the necessary modules:

Exercise 1: Heun’s method
a) Write down the Butcher tableau for Heun’s method

b) Use the order conditions for Runge-Kutta methods to show that Heun’s method has convergence order
2 but not 3.

Exercise 2: Implementation and Testing of Runge-Kutta methods
In this problem, you are asked to compare two 3-rd order Runge-Kutta methods. As as test case, consider
the IVP

y′(t) = ey(t)(1 + t), y(0) = −1
2 , (1)

which has the solution
y(t) = − ln

(
e1/2 − t− t2

2

)
(2)

a) Implement the three-stage explicit Runge-Kutta known as Heun’s third order method defined by the
Butcher tableau

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

(3)

Use the order conditions for Runge-Kutta methods to theoretically verify that this method is of 3rd
order. Then run a convergence study by solving the IVP (1) numerically and calculate the experimentally
observed convergence rate. Also write out the error for each time-step size you chose in your convergence
rate study.

Hint. Start with recalling the general Runge-Kutta class

class Explicit_Runge_Kutta:
def __init__(self, a, b, c):

self.a = a
self.b = b
self.c = c

def __call__(self, y0, t0, T, f, Nmax):
Extract Butcher table
a, b, c = self.a, self.b, self.c

Stages
s = len(b)
ks = [np.zeros_like(y0, dtype=np.double) for s in range(s)]

Start time-stepping
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax

while(ts[-1] < T):
t, y = ts[-1], ys[-1]

Compute stages derivatives k_j
for j in range(s):

t_j = t + c[j]*dt
dY_j = np.zeros_like(y, dtype=np.double)
for l in range(j):

dY_j += dt*a[j,l]*ks[l]

ks[j] = f(t_j, y + dY_j)

Compute next time-step
dy = np.zeros_like(y, dtype=np.double)
for j in range(s):

dy += dt*b[j]*ks[j]

ys.append(y + dy)
ts.append(t + dt)

return (np.array(ts), np.array(ys))

and

def compute_eoc(y0, t0, T, f, Nmax_list, solver, y_ex):
errs = []
for Nmax in Nmax_list:

ts, ys = solver(y0, t0, T, f, Nmax)
ys_ex = y_ex(ts)
errs.append(np.abs(ys - ys_ex).max())
print("For Nmax = {:3}, max ||y(t_i) - y_i||= {:.3e}".format(Nmax,errs[-1]))

errs = np.array(errs)
Nmax_list = np.array(Nmax_list)
dts = (T-t0)/Nmax_list

eocs = np.log(errs[1:]/errs[:-1])/np.log(dts[1:]/dts[:-1])
return errs, eocs

b) Redo the previous exercise with Kutta’s third order method defined by

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

Which of the two previous methods would you prefer?

2

c) Finally, implement the classical four-stage explicit Runge-Kutta given by

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(4)

Show both theoretically and experimentally, that this is a 4-th order method.

Exercise 3: SIR Model
In the exercise you are asked to numerically solve the SIR model

S′ = −βSI (5)
I ′ = βSI − γI (6)
R′ = γI, (7)

using a RKM of your choice. Recall that β denotes the infection rate, and γ the removal rate.

a) Show that any solution of the SIR system is conservative in the following sense:

S(t) + I(t) +R(t) = const. (8)

b) Solve the SIR model for disease with β = 10/(40 · 8 · 24) and γ = 3/(15 · 24). The dimensions for β
and γ are 1/hour.

Start with 50 healthy individuals and 1 infected person. Simulate the spread of the disease for 30 days
taking a time step of 6 minutes. Plot the final solution, that is, S(t), I(t) and R(t). Also check the
conservation property for your chosen RKM by plotting S(t) + I(t) +R(t) as well.

3

