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1 Introduction: Whetting your appetite
The topic of this note is the numerical solution of systems of ordinary differential equations (ODEs).
This has been discussed in previous courses, see for instance the web page Differensialligninger from
Mathematics 1, as well as in Part 1 of this course, where the Laplace transform was introduced as a tool
to solve ODEs analytically.

Before we present the first numerical methods to solve ODEs, we quickly look at a number of examples
which hopefully will will serve as test examples throughout this topic.

1.1 Scalar first order ODEs
A scalar, first-order ODE is an equation on the form

y′(t) = f(t, y(t)), y(t0) = y0,

where y′(t) = dy
dt . The inital condition y(t0) = y0 is required for a unique solution.

Notice.

It is common to use the term initial value problem (IVP) for an ODE for which the inital value
y(t0) = y0 is given, and we only are interested in the solution for t > t0. In these lecture notes, only
initial value problems are considered.

Example 1.1. Population growth and decay processes.

One of the simplest possible IVP is given by

y′(t) = λy(t), y(t0) = y0. (1)

For λ > 0 this equation can present a simple model for the growth of some population, e.g., cells, humans,
animals, with unlimited resources (food, space etc.). The constant λ then corresponds to the growth rate
of the population.

Negative λ < 0 typically appear in decaying processes, e.g., the decay of a radioactive isotopes, where λ is
then simply called the decay constant.

The analytical solution to (1) is
y(t) = y0e

λ(t−t0) (2)

and will serve us at several occasions as reference solution to assess the accuracy of the numerical methods
to be introduced.

https://wiki.math.ntnu.no/tma4100/tema/differentialequations


Example 1.2. Time-dependent coefficients.

Given the ODE
y′(t) = −2ty(t), y(0) = y0.

for some given initial value y0. The general solution of the ODE is

y(t) = Ce−t
2
,

where C is a constant. To determine the constant C, we use the initial condition y(0) = y0 yielding the
solution

y(t) = y0e
−t2 .

1.2 Systems of ODEs
A system of m ODEs are given by

y′1 = f1(t, y1, y2, . . . , ym), y1(t0) = y1,0

y′2 = f2(t, y1, y2, . . . , ym), y2(t0) = y2,0

...
...

y′m = fm(t, y1, y2, . . . , ym), ym(t0) = ym,0

or more compactly by

y′(t) = f(t,y(t)), y(t0) = y0

where we use boldface to denote vectors in Rm,

y(t) =


y1(t)
y2(t)
...

ym(t)

 , f(t,y) =


f1(t, y1, y2, . . . , ym),
f2(t, y1, y2, . . . , ym),

...
fm(t, y1, y2, . . . , ym),

 , y0 =


y1,0

y2,0
...

ym,0

 .

Example 1.3. Lotka-Volterra equation.

The Lotka-Volterra equation is a system of two ODEs describing the interaction between preys and
predators over time. The system is given by

y′(t) = αy(t)− βy(t)z(t)
z′(t) = δy(t)z(t)− γz(t)

where x denotes time, y(t) describes the population of preys and z(t) the population of predators. The
parameters α, β, δ and γ depends on the populations to be modeled.

Example 1.4. Spreading of diseases.

Motivated by the ongoing corona virus pandemic, we consider a (simple!) model for the spreading of an
infectious disease, which goes under the name SIR model.

The SIR models divides the population into three population classes, namely

S(t): number individuals susceptible for infection,

I(t): number infected individuals, capable of transmitting the disease,

R(t): number removed individuals who cannot be infected due death or to immunity after recovery
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The model is of the spreading of a disease is based on moving individual from S to I and then to R. A
short derivation can be found in [?, Ch. 4.2]. The final ODE system is given by

S′ = −βSI (3)
I ′ = βSI − γI (4)
R′ = γI, (5)

where β denotes the infection rate, and γ the removal rate.

1.3 Higher order ODEs
An initial value ODE of order m is given by

u(m) = f(t, u, u′, . . . , u(m−1)), u(t0) = u0, u′(t0) = u′0, . . . , u(m−1)(t0) = u
(m−1)
0 .

Here u(1) = u′ and u(m+1) = du(m)

dx , for m > 0.

Example 1.5. .

Van der Pol’s equation is a second order differential equation, given by:

u(2) = µ(1− u2)u′ − u, u(0) = u0, u′(0) = u′0.

where µ > 0 is some constant. As initial values u0 = 2 and u′0 = 0 are common choices.

Later in the note we will see how such equations can be rewritten as a system of first order ODEs. Systems
of higher order ODEs can be treated similarly.

2 Euler’s method
Now we turn to our first numerical method, namely Euler’s method, known from Mathematics 1. We
quickly review two alternative derivations, namely one based on numerical differentiation and one on
numerical integration.

2.1 Derivation of Euler’s method
Euler’s method is the simplest example of a so-called one step method (OSM). Given the IVP

y′(t) = f(t, y(t)), y(t0) = y0,

and some final time T , we want to compute to an approximation of y(t) on [t0, T ].

We start from t0 and choose some (usually small) time step size τ0 and set the new time t1 = t0 + τ0. The
goal is to compute a value y1 serving as approximation of y(t1).

To do so, we Taylor expand the exact (but unknown) solution y(t0 + τ) around x0:

y(t0 + τ) = y(t0) + τy′(t0) + 1
2τ

2y′′(t0) + · · · .

Assume the step size τ to be small, such that the solution is dominated by the first two terms. In that
case, these can be used as the numerical approximation in the next step:

y(t0 + τ) ≈ y(t0) + τy′(t0) = y0 + τf(t0, y0)

giving
y1 = y0 + τ0f(t0, y0).
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Now we can repeat this procedure and choose the next (possibly different) time step τ1 and compute a
numerical approximation y2 for y(t) at t2 = t1 + τ1 by setting

y2 = y1 + τ1f(t1, y1).

The idea is to repeat this procedure until we reached the final time T resulting in the following

Recipe: Euler’s method.

Given a function f(t, y) and an initial value (t0, y0).

• Set t = t0.

• while t < T :

Choose τk
yk+1 := yk + τf(tk, yk)

tk+1 := tk + τk

t := tk+1

So we can think of the Euler method as a method which approximates the continuous but unknown solution
y(t) : [t0, T ]→ R by a discrete function y∆ : {t0, t1, . . . , tNt

} such that y∆(tk) := yk ≈ y(tk).

How to choose τi? The simplest possibility is to set a maximum number of steps Nmax = Nt and then to
chose a constant time step τ = (T − t0)/Nmax resulting in Nmax + 1 equidistributed points. Later we will
also learn, how to choose the time step adaptively, depending on the solution’s behavior.

Numerical solution between the nodes.

At first we have only an approximation of y(t) at the Nt + 1 nodes y∆ : {t0, t1, . . . , tNt
}. If we want

to evaluate the numerical solution between the nodes, a natural idea is to extend the discrete solution
linearly between each pair of time nodes tk, tk+1. This is compatible with the way the numerical
solution can be plotted, namely by connected each pair (tk, yk) and (tk+1, yk+1) with straight lines.

Also, in order to compute an approximation at the next point tk+1, Euler’s method only needs to know f ,
τk and the solution yk at the current point tk, but not at earlier points tk−1, tk−2, . . . Thus Euler’s method
is an prototype of a so-called One Step Method (OSM). We will formalize this concept later.

Interpretation: Euler’s method via forward difference operators.

After rearranging terms, we can also interpret the computation of an approximation y1 ≈ y(t1) as
replacing the derivative y′(t0) = f(t0, y0) with a forward difference operator

f(t0, y0) = y′(t0) ≈ y(t1)− y(t0)
τ

Thus Euler’s method replace the differential quotient by a difference quotient.

Alternative derivation via numerical integration. First we recall that for a function f : [a, b]→ R,
we can approximate its integral

∫ b
a
f(t) dt by a very simple quadrature rule of the form∫ b

a

f(t) dt ≈ (b− a)f(a). (6)
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Question.

What is the degree of exactness of the previous quadrature rule?

Turning to our IVP, we know formally integrate the ODE y′(t) = f(t, y(t)) on the time interval Ik =
[tk, tk+1] and then applying the quadrature rule (6) leading to

y(tk+1)− y(tk) =
∫ tk+1

tk

y′(t) dt =
∫ tk+1

tk

f(t, y(t)) dt ≈ (tk+1 − tk)︸ ︷︷ ︸
τk

f(tk, y(tk))

Sorting terms gives us back Euler’s method

y(tk+1) ≈ y(tk) + τkf(tk, y(tk)).

2.2 Implementation of Euler’s method
Euler’s method can be implemented in only a few lines of code:

def explicit_euler(y0, t0, T, f, Nmax):
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax
while(ts[-1] < T):

t, y = ts[-1], ys[-1]
ys.append(y + dt*f(t, y))
ts.append(t + dt)

return (np.array(ts), np.array(ys))

Let’s test Euler’s method with the simple IVP given in Example 1.1.

t0, T = 0, 1
y0 = 1
lam = 1
Nmax = 4

# rhs of IVP
f = lambda t,y: lam*y

# Compute numerical solution using Euler
ts, ys_eul = explicit_euler(y0, t0, T, f, Nmax)

# Exact solution to compare against
y_ex = lambda t: y0*np.exp(lam*(t-t0))
ys_ex = y_ex(ts)

# Plot it
plt.plot(ts, ys_ex)
plt.plot(ts, ys_eul, ’ro-’)
plt.legend(["$y_{ex}$", "y" ])

Plot the solution for various Nt, say Nt = 4, 8, 16, 32 against the exact solution given in Example 1.1.

Exercise 1: Error study for the Euler’s method
We observed that the more we decrease the constant step size τ (or increase Nmax), the closer the numerical
solution gets to the exact solution.

Now we ask you to quantify this. More precisely, write some code to compute the error

max
i∈{0,...,Nmax}

|y(ti)− yi|

for Nmax = 4, 8, 16, 32, 64, 128. How does the error reduces if you double the number of points?
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# Insert your code here.

def error_study(y0, t0, T, f, Nmax_list, solver, y_ex):
max_errs = []
for Nmax in Nmax_list:

ts, ys = solver(y0, t0, T, f, Nmax)
ys_ex = y_ex(ts)
errors = ys - ys_ex
max_errs.append(np.abs(errors).max())
print("For Nmax = {:3}, max ||y(t_i) - y_i||= {:.3e}".format(Nmax,max_errs[-1]))

print("The computed error reduction rates are")
max_errs = np.array(max_errs)
print(max_errs[:-1]/max_errs[1:])

Nmax_list = [4, 8, 16, 32, 64, 128]
error_study(y0, t0, T, f, Nmax_list, explicit_euler, y_ex)

3 Heun’s method
Solution. Before we start to look at more exciting examples, we will derive a one step method which is
more accurate then Euler’s method. Note that Euler’s method can be interpreted as being based on a
quadrature rule with degree of exactness equal to 0. Let’s try to use a better quadrature rule!

Again, we start from the exact representation, but this time we use the trapezoidal rule, which has degree
of exactness equal to 1, yielding

y(tk+1)− y(tk) =
∫ tk+1

tk

f(t, y(t)) dt ≈ τk
2 (f(tk+1, y(tk+1) + f(tk, y(tk))

This suggest to consider the scheme

yk+1 − yk = τk
2 (f(tk+1, yk+1) + f(tk, y(k))

But note that starting from yk, we cannot immediately compute yk+1 as it appears also in the expression
f(tk+1, yk+1)! This is an example of an implicit method!

To turn this scheme into an explicit scheme, the idea is now to approximate yk+1 appearing in f with an
explicit Euler step:

yk+1 = yk + τk
2
(
f
(
tk+1, yk + τkf(tk, yk)

)
+ f(tk, yk)

)
.

Observe that we have now nested evaluations of f . This can be best arranged by computing the nested
expression in stages, first the inner one and then the outer one. This leads to the following recipe.

Recipe: Heun’s method.

Given a function f(t, y) and an initial value (t0, y0).

• Set t = t0.

• while t < T :

Choose τk
Compute stage k1 := f(tk, yk)

Compute stage k2 := f(tk + τk, yk + τkk1)

yk+1 := yk + τk

2 (k1 + k2)

tk+1 := tk + τk
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t := tk+1

The function heun is implemented in ode.py:

def heun(y0, t0, T, f, Nmax):
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax
while(ts[-1] < T):

t, y = ts[-1], ys[-1]
k1 = f(t,y)
k2 = f(t+dt, y+dt*k1)
ys.append(y + 0.5*dt*(k1+k2))
ts.append(t + dt)

return (np.array(ts), np.array(ys))

Exercise 2: Comparing Heun with Euler
a) Redo the Example 1.1 with Heun, and plot both the exact solution, yeul and yheun for Nt =
4, 8, 16, 32.

# Insert code here.

t0, T = 0, 1
y0 = 1
lam = 1
Nmax = 4

# rhs of IVP
f = lambda t,y: lam*y

# Compute numerical solution using Euler and Heun
ts, ys_eul = explicit_euler(y0, t0, T, f, Nmax)
ts, ys_heun = heun(y0, t0, T, f, Nmax)

# Exact solution to compare against
y_ex = lambda t: y0*np.exp(lam*(t-t0))
ys_ex = y_ex(ts)

# Plot it
plt.plot(ts, ys_ex)
plt.plot(ts, ys_eul, ’ro-’)
plt.plot(ts, ys_heun, ’b+-’)
plt.legend(["$y_{ex}$", "$y$ Euler", "$y$ Heun" ])

b) Redo Exercise 1 with Heun.

# Insert code here.

Nmax_list = [4, 8, 16, 32, 64, 128]
error_study(y0, t0, T, f, Nmax_list, heun, y_ex)
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4 Applying Heun’s and Euler’s method
Solution.

Example 4.1. The Lotka-Volterra equation revisited.

Solve the Lotka-Volterra equation

y′(t) = αy(t)− βy(t)z(t)
z′(t) = δy(t)z(t)− γz(t)

In this example, use the parameters and initial values

α = 2, β = 1, δ = 0.5, γ = 1, y1,0 = 2, y2,0 = 0.5.

User Euler’s method to solve the equation over the interval [0, 20], and use τ = 0.02. Try also other step
sizes, e.g. τ = 0.1 and τ = 0.002.

NB! In this case, the exact solution is not known. What is known is that the solutions are periodic and
positive. Is this the case here? Check for different values of τ .

# Reset plotting parameters
plt.rcParams.update({’figure.figsize’: (12,6)})

# Define rhs
def lotka_volterra(t, y):

# Set parameters
alpha, beta, delta, gamma = 2, 1, 0.5, 1
# Define rhs of ODE
dy = np.array([alpha*y[0]-beta*y[0]*y[1],

delta*y[0]*y[1]-gamma*y[1]])
return dy

t0, T = 0, 20 # Integration interval
y0 = np.array([2, 0.5]) # Initital values

# Solve the equation
tau = 0.002
Nmax = int(20/tau)
print("Nmax = {:4}".format(Nmax))
ts, ys_eul = explicit_euler(y0, t0, T, lotka_volterra, Nmax)

# Plot results
plt.plot(ts, ys_eul)
plt.xlabel(’t’)
plt.legend([’$y_0(t)$ - Euler’, ’$y_1(t)$ - Euler’],

loc="upper right" )

Exercise 3: Solving the Lotka-Volterra system using Heun’s method
Redo the last example with Heun’s method and compare the solutions generated by Euler’s and Heun’s
method.

4.1 Higher order ODEs
How can we numerically solve higher order ODEs using, e.g., Euler’s or Heun’s method?

Given the m-th order ODE
u(m)(t) = f

(
t, u(t), u′(x), . . . , u(m−1)).

For a unique solution, we assume that the initial values

u(t0), u′(t0), u′′(t0), . . . , u(m−1)(t0)
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are known.

Such equations can be written as a system of first order ODEs by the following trick: Let

y1(x) = u(x), y2(x) = u′(x), y3(x) = u(2)(x), . . . , ym(x) = u(m−1)(x)

such that

y′1 = y2, y1(a) = u(a)
y′2 = y3, y2(a) = u′(a)
...

...
y′m−1 = ym, ym−1(a) = u(m−2)(a)
y′m = f(t, y1, y2, . . . , ym−1, ym), ym(a) = u(m−1)(a)

which is nothing but a system of first order ODEs, and can be solved numerically exactly as before.

Exercise 4: Numerical solution of Van der Pol’s equation
Recalling Example 1.5, the Van der Pol oscillator is described by the second order differential equa-
tion

u′′ = µ(1− u2)u′ − u, u(0) = u0, u′(0) = u′0.

It can be rewritten as a system of first order ODEs:

y′1 = y2, y1(0) = u0,

y′2 = µ(1− y2
1)y2 − y1, y2(0) = u′0.

a) Let µ = 2, u(0) = 2 and u′(0) = 0 and solve the equation over the interval [0, 20], using the explicit
Euler and τ = 0.1. Play with different step sizes, and maybe also with different values of µ.

b) Repeat the previous numerical experiment with Heun’s method. Try to compare the number of steps
you need to perform with Euler vs Heun to obtain visually the “same” solution. (That is, you measure
the difference of the two numerical solutions in the “eyeball norm”.)

# Insert code here.

# Define the ODE
def f(t, y):

mu = 2
dy = np.array([y[1],

mu*(1-y[0]**2)*y[1]-y[0] ])
return dy

# Set initial time, stop time and initial value
t0, T - 0, 20
y0 = np.array([2,0])

# Solve the equation using Euler and plot
tau = 0.1
Nmax = int(20/tau)
print("Nmax = {:4}".format(Nmax))
ts, ys_eul = explicit_euler(y0, t0, T, f, Nmax)
plt.plot(ts,ys_eul);

# Solve the equation using Heun
tau = 0.1
Nmax = int(20/tau)
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print("Nmax = {:4}".format(Nmax))
ts, ys_heun = heun(y0, t0, T, f, Nmax)
plt.plot(ts,ys_heun);

plt.xlabel(’x’)
plt.title(’Van der Pols ligning’)
plt.legend([’y1 - Euler’,’y2 - Euler’, ’y1 - Heun’,’y2 - Heun’],loc=’upper right’);

5 One Step Methods
Solution. In the last lecture, we introduced the explicit Euler method and Heun’s method, motivating
the following definition.

Definition 5.1. One step methods.

A one step method defines an approximation to the IVP in the form of a discrete function y∆ :
{t0, . . . , tN} → Rn given by

yk+1 := yk + τkΦ(tk,yk,yk+1, τk) (7)

for some increment function

Φ : [t0, T ]× Rn × Rn × R+ → Rn.

The OSM is called explicit if the increment function Φ does not depend on yk+1, otherwise it is called
implicit.

Example 5.1. Increment functions for Euler and Heun.

The increment functions for Euler’s and Heun’s method are defined by respectively

Φ(tk, yk, yk+1, τk) = f(tk, yk), Φ(tk, yk, yk+1, τk) = 1
2
(
f(tk, yk) + f

(
tk+1, yk + τkf(tk, yk)

))
.

5.1 Local and global truncation error of OSM
Definition 5.2. Local truncation error.

The local truncation error η(t, τ) is defined by

η(t, τ) = y(t) + τΦ(t, y(t), y(t+ τ), τ)− y(t+ τ). (8)

η(t, τ) is often also called the local discretization or consistency error.

A one step method is called consistent of order p ∈ N if there is a constant C > 0 such that

|η(t, τ)| 6 Cτp+1 for τ → 0. (9)

A short-hand notation for this is to write η(t, τ) = O(τp+1) for τ → 0.

Example 5.2. .

Euler’s method has consistency order p = 1.

Definition 5.3. Global truncation error.

For a numerical solution y∆ : {t0, . . . , tN} → R the global truncation error is defined by

ek(tk, τk) = y(tk)− yk for k = 0, . . . , N. (10)

A one step method is called convergent with order p ∈ N if

max
k∈{0,1,...,Nt}

|ek(tk, τk)| = O(τp) (11)

with τ = maxk τk.
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Discussion. If a one step method has convergence order equal to p, the maximum error e(τ) =
maxk |e(tk, τ)| can be thought as a function of the step size τ is of the form

e(τ) = O(τp) 6 Cτp.

This implies that if we change the time step size from τ to τ
2 , we can expect that the error decreases from

Cτp to C( τ2 )p, that is, the error will be reduced by a factor 2−p.

How can we determine the convergence rate by means of numerical experiments? Starting from e(τ) =
O(τp) 6 Cτp and taking the logarithm gives

log(e(τ)) 6 p log(τ) + log(C).

Thus log(e(τ)) is a linear function of log(τ) and the slope of this linear function corresponds to the order
of convergence p.

So if you have an exact solution at your disposal, you can for an increasing sequence Nmax_list defining
a descreasing sequence of maximum time-steps {τ0, . . . , τM} and solve your problem numerically and
then compute the resulting exact error e(τi) and plot it against τi in a log− log plot to determine the
convergence order.

In addition you can also compute the experimentally observed convergence rate EOC for i = 1, . . .M
defined by

EOC(i) = log(e(τi))− log(e(τi−1))
log(τi)− log(τi−1) = log(e(τi)/e(τi−1))

log(τi/τi−1)
Ideally, EOC(i) is close to p.

This is implemented in the following python function.

def compute_eoc(y0, t0, T, f, Nmax_list, solver, y_ex):
errs = [ ]
for Nmax in Nmax_list:

ts, ys = solver(y0, t0, T, f, Nmax)
ys_ex = y_ex(ts)
errs.append(np.abs(ys - ys_ex).max())
print("For Nmax = {:3}, max ||y(t_i) - y_i||= {:.3e}".format(Nmax,errs[-1]))

errs = np.array(errs)
Nmax_list = np.array(Nmax_list)
dts = (T-t0)/Nmax_list

eocs = np.log(errs[1:]/errs[:-1])/np.log(dts[1:]/dts[:-1])
return errs, eocs

Exercise 5: Convergence order for Euler and Heun
Use the compute_eoc function and any of the examples with a known analytical solution from the previous
lecture to determine convergence order for Euler’s and Heun’s method.

Solution. The solution to this exercise is implemented in the exercise_eoc_study function as part of
the ode.py file. You can also find it in the jupyter notebook version of the this lecture note.

5.2 A general convergence result for one step methods
Theorem 5.1. Convergence of one-step methods.

Assume that there exist positive constants M and D such that the increment function satisfies

‖Φ(t,y; τ)−Φ(t, z; τ)‖ ≤M‖y− z‖

and the local trunctation error satisfies

‖η(t, τ)‖ = ‖y(t+ τ)− (y(t) + τΦ(t,y(t), τ)) ‖ 6 Dτp+1
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for all t, y and z in the neighbourhood of the solution. In that case, the global error satisfies

max
k∈{0,1,...,Nt}

‖ek(tk, τk)‖ 6 Cτp, C = eM(T−t0) − 1
M

D,

where τ = maxk∈{0,1,...,Nt} τk.

Proof. We omit the proof here.

It can be proved that the first of these conditions are satisfied for all the methods that will be considered
here.

Summary.

The convergence theorem for one step methods can be summarized as

“local truncation error behaves like O(τp+1)” + “Increment function satisfies a Lipschitz condition”
⇒ “global truncation error behaves like O(τp)”

or equivalently,

“consistency order p” + “Lipschitz condition for the Increment function” ⇒ “convergence order p.

5.3 Convergence properties of Heun’s method
Thanks to Theorem 5.1, we need to show two things to prove convergence and find the corresponding
convergence of a given one step methods:

• determine the local truncation error, expressed as a power series in the step size τ

• the condition ‖Φ(t,y, τ)−Φ(t, z, τ)‖ 6M‖y − z‖

Determining the consistency order. The local truncation error is found by making Taylor expansions
of the exact and the numerical solutions starting from the same point, and compare. In practice, this is
not trivial. For simplicity, we will here do this for a scalar equation y′(t) = f(t, y(t)). The result is valid
for systems as well

In the following, we will use the notation

ft = ∂f

∂t
, fy = ∂f

∂y
, ftt = ∂2f

∂t2
fty = ∂2f

∂t∂y
etc.

Further, we will surpress the arguments of the function f and its derivatives. So f is to be understood as
f(t, y(t)) although it is not explicitly written.

The Taylor expansion of the exact solution y(t+ τ) is given by

y(t+ τ) = y(t) + τy′(t) + τ2

2 y
′′(t) + τ3

6 y
′′′(t) + · · · .

Higher derivatives of y(t) can be expressed in terms of the function f by using the chain rule and the
product rule for differentiation.

y′(t) = f,

y′′(t) = ft + fyy
′ = ft + fyf,

y′′′(t) = ftt + ftyy
′ + fytf + fyyy

′f + fyft + fyfyy
′ = ftt + 2ftyf + fyyf

2 + fyft + (fy)2f.

Find the series of the exact and the numerical solution around x0, y0 (any other point will do equally
well). From the discussion above, the series for the exact solution becomes

y(t0 + τ) = y0 + τf + τ2

2 (ft + fyf) + τ3

6 (ftt + 2ftyf + fyyff + fyfxf + fyft + (fy)2f) + · · · ,
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where f and all its derivatives are evaluated in (t0, y0). For the numerical solution we get

k1 = f(t0, y0) = f,

k2 = f(t0 + τ, y0 + τk1)

= f + τft + fyτk1 + 1
2fttτ

2 + ftyττk1 + 1
2fyyτ

2k2
1 + · · ·

= f + τ(ft + fyf) + τ2

2 (ftt + 2ftyf + fyyf
2) + · · · ,

y1 = y0 + τ

2 (k1 + k2) = y0 + τ

2 (f + f + τ(ft + fyf) + τ2

2 (ftt + 2ftyk1 + fyyf
2)) + · · ·

= y0 + τf + τ2

2 (ft + fyf) + τ3

4 (ftt + 2ftyf + fyyf
2) + · · ·

and the local truncation error will be

η(t0, τ) = y(t0 + τ)− y1 = τ3

12(−ftt − 2ftyf − fyyf2 + 2fyft + 2(fy)2f) + · · ·

The first nonzero term in the local truncation error series is called the principal error term. For τ
sufficiently small this is the term dominating the error, and this fact will be used later.

Although the series has been developed around the initial point, series around xn, y(tn) will give similar
results, and it is possible to conclude that, given sufficient differentiability of f there is a constant D such
that

max
i
|η(ti, τ)| ≤ Dτ3.

Consequently, Heun’s method is of consistency order 2.

Lipschitz condition for Φ. Further, we have to prove the condition on the increment function Φ(t, y).
For f differentiable, there is for all y, z some ξ between x and y such that f(t, y)− f(t, z) = fy(t, ξ)(y− z).
Let L be a constant such that |fy| < L, and for all x, y, z of interest we get

|f(t, y)− f(t, z)| ≤ L|y − z|.

The increment function for Heun’s method is given by

Φ(t, y) = 1
2(f(t, y) + f(t+ τ, y + τf(t, y))).

By repeated use of the condition above and the triangle inequalitiy for absolute values we get

|Φ(t, y)− Φ(t, z)| = 1
2 |f(t, y) + f(t+ τ, y + f(t, y))− f(t, z)− τf(t+ τ, z + f(t, z)|

≤ 1
2
(
|f(t, y)− f(t, z)|+ |f(t+ τ, y + τf(t, y))− f(t+ τ, z + τf(t, z)|

)
≤ 1

2
(
L|y − z|+ L|y + τf(t, y)− z − τf(t, z)|

)
≤ 1

2
(
2L|y − z|+ τL2|y − z|

)
= (L+ τ

2L
2)|y − z|.

Assuming that the step size τ is bounded upward by some τ0, we can conclude that

|Φ(t, y)− Φ(t, z)| ≤M |y − z|, M = L+ τ0
2 L

2.

Thanks to Theorem 5.1, we can conclude that Heun’s method is convergent of order 2.

6 Runge-Kutta Methods
In the previous lectures we introduced Euler’s method and Heun’s method as particular instances of the
One Step Methods, and we presented the general error theory for one step method.

In this Lecture, we introduce a large family of the one step methods which go under the nameRunge-Kutta
methods (RKM). We will see that Euler’s method and Heun’s method are instance of RKMs.
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6.1 Derivation of Runge-Kutta Methods
For a given time interval Ii = [ti, ti+1] we want to compute yi+1 assuming that yi is given. Starting from
the exact expression

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t)) dt,

the idea is now to approximate the integral by some quadrature rule Q[·]({ξj}sj=1, {bj}sj=1) defined on Ii.
Then we get

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t)) dt (12)

≈ τ
s∑
j=0

bjf(ξj , y(ξj)) (13)

Now we can define {cj}sj=1 such that ξj = ti + cjτ for j = 1, . . . , s

Exercise 6: A first condition on bj

Question: What value do you expect for
∑s
j=1 bj?

A.
∑s
j=1 bj = τ

B.
∑s
j=1 bj = 0

C.
∑s
j=1 bj = 1

Answer: C.

Solution: A: Wrong. B: Wrong. C: Right.

In contrast to pure numerical integration, we don’t know the values of y(ξj). Again, we could use the
same idea to approximate

y(ξj)− y(ti) =
∫ ti+cjτ

ti

f(t, y(t)) dt

but then again we get a closure problem if we choose new quadrature points. The idea is now to not
introduce even more new quadrature points but to use same y(ξj) to avoid the closure problem. Note that
this leads to an approximation of the integrals

∫ ti+cjτ

ti
with possible nodes outside of [ti, ti + cjτ ].

This leads us to

y(ξj)− y(ti) =
∫ ti+cjτ

ti

f(t, y(t)) dt (14)

≈ cjτ
s∑
l=1

ãjlf(ξl, y(ξl)) (15)

= τ

s∑
l=1

ajlf(ξl, y(ξl)) (16)

where we set cj ãjl = ajl.
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Exercise 7: A first condition on ajl

Question: What value do you expect for
∑s
l=1 ajl?

A.
∑s
l=1 ajl = 1

cj

B.
∑s
l=1 ajl = cj

C.
∑s
l=1 ajl = 1

D.
∑s
l=1 ajl = τ

Answer: B.

Solution: A: Wrong. B: Right. C: Wrong. D: Wrong.

Definition 6.1. Runge-Kutta methods.

Given bj , cj , and ajl for j, l = 1, . . . s, the Runge-Kutta method is defined by the recipe

Yj = yi + τ

s∑
l=1

ajlf(ti + clτ, Yl) for j = 1, . . . s, (17)

yi+1 = yi + τ

s∑
j=1

bjf(ti + cjτ, Yj) (18)

Runge-Kutta schemes are often specified in the form of a Butcher table:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

(19)

If aij = 0 for j > i the Runge-Kutta method is called explicit. (Why?)

Note that in the final step, all the function evaluation we need to perform have already been performed
when computing Yj .

Therefore one often rewrite the scheme by introducing stage derivatives

kl = f(ti + clτ, Yl) (20)

= f(ti + clτ, yi + τ

s∑
j=1

aljkj) j = 1, . . . s, (21)

so the resulting scheme will be (swapping index l and j)

kj = f(ti + cjτ, yi + τ

s∑
l=1

ajlkl) j = 1, . . . s, (22)

yi+1 = yi + τ

s∑
j=1

bjkj (23)

Exercise 8: Butcher table for the explicit Euler
Write down the Butcher table for the explicit Euler.
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Solution. Define k1 = f(ti, yi) = f(ti+0 ·τ, yi+τ ·0 ·k1). Then the explicit Euler step yi+1 = yi+τk1 =
yi + τ · 1 · k1, and thus the Butcher table is given by

0 0
1
.

Exercise 9: The improved explicit Euler method
We formally derive the explicit midpoint rule or improved explicit Euler method. Applying the
midpoint rule to our integral representatio yields

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t)) dt (24)

≈ τf(ti + 1
2τ, y(ti + 1

2τ)) (25)

Since we cannot determine the value y(ti + 1
2τ) from this system, we approximate it using a half Euler

step
y(ti + 1

2τ) ≈ yti + 1
2τf(ti, y(ti))

leading to the scheme

yi+1/2 := yi + 1
2τf(ti, yi) (26)

yi+1 := yi + τf(ti + 1
2τ, yi+1/2) (27)

a) Is this a one-step function? Can you define the increment function Φ?

Solution. Yes it is, and it’s increment function is given by

Φ(ti, yi, yi+1, τ) = f(ti + 1
2τ, yi + 1

2τf(ti, yi))

b) Can you rewrite this as a Runge-Kutta method? If so, determine the Butcher table of it.

Solution. Define k1 and k2 as follows,

yi+1/2 := yi + 1
2τ f(ti, yi)︸ ︷︷ ︸

=:k1

(28)

yi+1 := yi + τf(ti + 1
2τ, yi+1/2) = yi + τ f(ti + 1

2τ, yi + τ 1
2k1)︸ ︷︷ ︸

:=k2

. (29)

Then

yi+1 = yi + τk2 (30)

and thus the Butcher table is given by
0 0 0
1
2

1
2 0
0 1

6.2 Implementation of explicit Runge-Kutta methods
Below you will find the implementation a general solver class Explicit_Runge_Kutta which at its
initialization takes in a Butcher table and has __call__ function

def __call__(self, y0, f, t0, T, n):

and can be used like this
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# Define Butcher table
a = np.array([[0, 0, 0],

[1.0/3.0, 0, 0],
[0, 2.0/3.0, 0]])

b = np.array([1.0/4.0, 0, 3.0/4.0])

c = np.array([0,
1.0/3.0,
2.0/3.0])

# Define number of time steps
n = 10

# Create solver
rk3 = Explicit_Runge_Kutta(a, b, c)

# Solve problem (applies __call__ function)
ts, ys = rk3(y0, t0, T, f, Nmax)

The complete implementation is given here:

class Explicit_Runge_Kutta:
def __init__(self, a, b, c):

self.a = a
self.b = b
self.c = c

def __call__(self, y0, t0, T, f, Nmax):
# Extract Butcher table
a, b, c = self.a, self.b, self.c

# Stages
s = len(b)
ks = [np.zeros_like(y0, dtype=np.double) for s in range(s)]

# Start time-stepping
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax

while(ts[-1] < T):
t, y = ts[-1], ys[-1]

# Compute stages derivatives k_j
for j in range(s):

t_j = t + c[j]*dt
dY_j = np.zeros_like(y, dtype=np.double)
for l in range(j):

dY_j += dt*a[j,l]*ks[l]

ks[j] = f(t_j, y + dY_j)

# Compute next time-step
dy = np.zeros_like(y, dtype=np.double)
for j in range(s):

dy += dt*b[j]*ks[j]

ys.append(y + dy)
ts.append(t + dt)

return (np.array(ts), np.array(ys))

Example 6.1. Implementation and testing of the improved Euler method.
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We implement the improved explicit Euler from above and plot the analytical and the numerical
solution. Finally, we determine the convergence order.

# Define Butcher table for improved Euler
a = np.array([[0, 0],

[0.5, 0]])
b = np.array([0, 1])
c = np.array([0, 0.5])

# Define rk2
rk2 = Explicit_Runge_Kutta(a, b, c)

t0, T = 0, 1
y0 = 1
lam = 1

# rhs of IVP
f = lambda t,y: lam*y

# Exact solution to compare against
y_ex = lambda t: y0*np.exp(lam*(t-t0))

# EOC test
Nmax_list = [4, 8, 16, 32, 64, 128]

errs, eocs = compute_eoc(y0, t0, T, f, Nmax_list, rk2, y_ex)
print(errs)
print(eocs)

6.3 Order conditions for Runge-Kutta Methods
The convergence theorem for one-step methods gave us some necessary conditions to guarantee that a
method is convergent order of p:

“consistency order p” + “Increment function satisfies a Lipschitz condition” ⇒ “convergence order p.

“local truncation error behaves like O(τp+1)” + “Increment function satisfies a Lipschitz condition”
⇒ “global truncation error behaves like O(τp)”

It turns out that for f is at least C1 with respect to all its arguments then the increment function Φ
associated with any Runge-Kutta methods satisfies a Lipschitz condition. Thus the next theorem

Theorem 6.1. Order conditions for Runge-Kutta methods.

18



A Runge–Kutta method has consistency order p if and only if all the conditions up to and including
p in the table below are satisfied.

p conditions
1

∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6
4

∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12∑

biaijajkck = 1/24

where sums are taken over all the indices from 1 to s.

Proof. Without proof.

Theorem 6.2. Convergence theorem for Runge-Kutta methods.

Given the IVP y′ = f(t,y),y(0) = y0. Assume f ∈ C1 and that a given Runge-Kutta method
satisfies the order conditions from Theorem 6.1 up to order p. Then the Runge-Kutta method is
convergent of order p.
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