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1 Explicit Euler method and a stiff problem
We start by taking a second look at the IVP

y′(t) = λy(t), y(t0) = y0. (1)

with the analytical solution
y(t) = y0e

λ(t−t0). (2)

Recall that for λ > 0 this equation can present a simple model for the growth of some population, while a
negative λ < 0 typically appears in decaying processes (read "negative growth").

So far we have only solved (1) numerically for λ > 0. Let’s start with a little experiment. First, we set
y0 = 1 and t0 = 0. Next, we chose different λ to model processes with various decay rates, let’s say

λ ∈ {−10,−50,−250}.

For each of those λ, we set a reference step length

τλ = 2
|λ|

and compute a numerical solution using the explict Euler method for three different time steps, namely
for τ ∈ {0.1τλ, τλ, 1.1τλ} and plot the numerical solution together with the exact solution.

def explicit_euler(y0, t0, T, f, Nmax):
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax
while(ts[-1] < T):

t, y = ts[-1], ys[-1]
ys.append(y + dt*f(t, y))
ts.append(t + dt)

return (np.array(ts), np.array(ys))

plt.rcParams[’figure.figsize’] = (16.0, 12.0)
t0, T = 0, 1
y0 = 1
lams = [-10, -50, -250]

fig, axes = plt.subplots(3,3)
fig.tight_layout(pad=3.0)

for i in range(len(lams)):
lam = lams[i]
tau_l = 2/abs(lam)
taus = [0.1*tau_l, tau_l, 1.1*tau_l]

# rhs of IVP



f = lambda t,y: lam*y

# Exact solution to compare against
y_ex = lambda t: y0*np.exp(lam*(t-t0))

# Compute solution for different time step size
for j in range(len(taus)):

tau = taus[j]
Nmax = int(1/tau)
ts, ys = explicit_euler(y0, t0, T, f, Nmax)
ys_ex = y_ex(ts)
axes[i,j].set_title(f"$\lambda = {lam}$, $\\tau = {tau:0.2e}$")
axes[i,j].plot(ts, ys, "ro-")
axes[i,j].plot(ts, ys_ex)
axes[i,j].legend(["$y_{\mathrm{FE}}$", "$y_{\mathrm{ex}}$"])

Figure 1: Numerical solution for IVP (1) with λ ∈ {−10,−50,−250} computed with the Forward Euler
method and time step sizes τ ∈ {0.1τλ, τλ, 1.1τλ}.

Discussion. Looking at the first column of the plot, we observe a couple of things. First, the numerical
solutions computed with a time step τ = 0.1τλ closely resembles the exact solution. Second, the exact
solution approaches for larger t a stationary solution (namely 0), which does not change significantly over
time. Third, as expected, the exact solution decays the faster the larger the absolute value of λ is. In
particular for λ = −250, the exact solution yex drops from yex(0) = 1 to yex(0.05) ≈ 3.7 · 10−6 at t = 0.05,
and at t = 0.13, the exact solution is practically indistinguishable from 0 as yex(0.13) ≈ 7.7 · 10−16.

Looking at the second column, we observe that a time-step size τ = τλ, the numerical solution oscillates
between−1 and 1, and thus the numerical solution does not resemble at all the monotonic and rapid decrease
of the exact solution. The situation gets even worse for a time-step size τ > τλ (third column) where the
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the numerical solution growths exponentially (in absolute values) instead of decaying exponentially as the
yex does.

So what is happening here? Why is the explicit Euler method behaving so strangely? Having a closer look
at the computation of a single step in Euler’s method for this particular test problem, we see that

yi+1 = yi + τf(ti, yi) = yi + τλyi = (1 + τλ)yi = (1 + τλ)2yi−1 = . . . = (1 + τλ)i+1y0

Thus, for this particular IVP, the next step yi+1 is simply computed by by multiplying the current value
yi with the the function (1 + λh).

yi+1 = R(z)i+1y0, z = τλ

where R(z) = (1 + z) is called the stability function of the explicit Euler method.

Now we can understand what is happening. Since λ < 0 and τ > 0, we see that as long as τλ > −2⇔
τ <

2
|λ|

, we have that |1 + τλ| < 1 and therefore, |yi| = |1 + τλ|i+1y0 is decreasing and converging to 0

For τ = 2
|λ|

= τλ, we obtain

yi+1 = (1 + τλ)i+1y0 = (−1)i+1y0

so the numerical solution will be jump between −1 and 1, exactly as observed in the numerical experiment.
Finally, for τ > 2

|λ|
= τλ, |1 + τλ| > 1, and |yi+1| = |1 + τλ|i+1y0 is growing exponentially.

Note, that is line of thoughts hold independent of the initial value y0. So even if we just want to solve our
test problem (1) away from the transition zone where yex drops from 1 to almost 0, we need to apply a
time-step tau < τλ to avoid that Euler’s method produces a completely wrong solution which exhibits
exponential growth instead of exponential decay.

Summary.

For the IVP problem (1), Euler’s method has to obey a time step restriction τ <
2
|λ|

to avoid

numerical instabilities in the form of exponential growth.

This time restriction becomes more severe the larger the absolute value of λ < 0 is. On the other
hand, the larger the absolute value of λ < 0 is, the faster the actual solution approaches the stationary
solution 0. Thus it would be reseaonable to use large time-steps when the solution is close to the
stationary solution. Nevertheless, because of the time-step restriction and stability issues, we are
forced to use very small time-steps, despite the fact that the exact solution is not changing very
much. This is a typical characteristic of a stiff problem. So the IVP problem (1) gets “stiffer” the
larger the absolute value of λ < 0 is, resulting in a severe time step restriction τ < 2

|λ|
to avoid

numerical instabilities.

This applies not only the explicit Euler method, but to all explicit Runge-Kutta methods: one
can show that for any explicit RKM, there a constant C such that any time step τ > C

|λ|
will lead

to numerical instabilities.

Outlook. Next, we will consider other one-step methods and investigate how they behave when applied
to the test problem (1). All these one step methods will have a common, that the advancement from yk
to yk+1 can be written as

yk+1 = R(z)yk with z = τλ

for some stability function R(z).

With our previous analysis in mind we will introduce the following

Definition 1.1. Stability domain.
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Let R(z) be the stability function for some one-step function. Then the domain

S = {z ∈ R : |R(z)| 6 1} (3)

is called the domain of stability.

Remark. Usually, one consider the entire complex plane in the definition of the domain of stability,
that is, S = {z ∈ C : |R(z)| 6 1} but in this course we can restrict ourselves to only insert real arguments
in the stability function.

2 The implicit Euler method
Previously, we considered Euler’s method, for the first-order IVP

y′(t) = f(t, y(t)), y(t0) = y0

where the new approximation yk+1 at tk+1 is defined by

yk+1 := yk + τf(tk, yk)

We saw that this could be interpreted as replacing the differential quotient y′ by a forward difference
quotient

f(tk, yk) = y′(tk) ≈ y(tk+1)− y(tk)
τ

Here the term “forward” refers to the fact that we use a forward value y(tk+1) at tk+1 to approximate the
differential quotient at tk.

Now we consider a variant of Euler’s method, known as the implicit or backward Euler method. This
time, we simply replace the differential quotient y′ by a backward difference quotient

f(tk, yk) = y′(tk) ≈ y(tk)− y(tk−1)
τ

resulting in the following

Recipe: Implicit/backward Euler method.

Given a function f(t, y) and an initial value (t0, y0).

• Set t = t0, choose τ .

• while t < T :

yk+1 := yk + τf(tk+1, yk+1)

tk+1 := tk + τ

t := tk+1

Note that in contrast to the explicit/forward Euler, the new value of yk+1 is only implicitly defined as it
appears both on the left-hand side and right-hand side. Generally, if f is nonlinear in its y argument, this
amounts to solve a non-linear equation, e.g., by using fix-point iterations or Newton’s method. But if f is
linear in y, that we only need to solve a linear system.

Let’s see what we get if we apply the backward Euler method to our model problem.

Exercise 1: Implicit/backward Euler method
a) Show that the backward difference operator (and therefore the backward Euler method) has consistency
order 1, that is,

y(t) + τf(t+ τ, y(t+ τ))− y(t+ τ) = O(τ2) (4)

4



Solution. As before, we simply do a Taylor expansion of y, but this time around t+ τ . Then

y(t) = y(t+ τ)− τy′(t+ τ) +O(τ2) = y(t+ τ)− τf(t+ τ, y(t+ τ)) +O(τ2)

which after rearranging terms is exactly (4).

b) Implement the implicit/backward Euler method

def implicit_euler(y0, t0, T, lam, Nmax):
...

for the IVP (1). Note that we now take λ as a parameter, and not a general function f as we want to
keep as simple as possible Otherwise we need to implement a nonlinear solver if we allow for arbitrary
right-hand sides f . You use the code for explicit_euler as a start point.

Solution. A possible implementation is given in implicit_euler in ode.py.

c) Write down the Butcher table for the implicit Euler method.

Solution.
1 1

1

d) Rerun the numerical experiment from the previous section with the implicit Euler method. Do you
observe any instabilities?

Solution. A possible solution is given in example_stiff_problem_BE in ode.py and produces the
following figures.

e) Find the stability function R(z) for the implicit Euler satisfying

yk+1 = R(τλ)yk (5)

and use it to explain the much better behavior of the implicit Euler when solving the initial value problem
(1).

Solution. For y′ = λy =: f(t, y), the implicit Euler gives

yk+1 = yk + τλyk+1 (6)

⇔ yk+1 = 1
1− τλyk =

(
1

1− τλ

)k+1
y0. (7)

Thus R(z) = 1
1−z . The domain of stability is S = (−∞, 0] ∪ [2,∞), in particular, no matter how we chose

τ , |R(λz)| < 1 for λ < 0. So the implicit Euler method is stable for the test problem (1), independent of
the choice of the time step.
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Figure 2: Numerical solution for IVP (1) with λ ∈ {−10,−50,−250} computed with the Backward
Euler method and time step sizes τ ∈ {0.1τλ, τλ, 1.1τλ}.

3 The Crank-Nicolson
Both the explicit/forward and the implicit/backward Euler method have consistency order 1. Next we
derive 2nd order method. We start exactly as in the derivation of Heun’s method presented in the
IntroductionNuMeODE.ipynb notebook.

Again, we start from the exact integral representation, and apply the trapezoidal rule

y(tk+1)− y(tk) =
∫ tk+1

tk

f(t, y(t)) dt ≈ τk
2 (f(tk+1, y(tk+1) + f(tk, y(tk))

This suggest to consider the implicit scheme

yk+1 = yk + τk
2 (f(tk+1, yk+1) + f(tk, yk))

which is known as the Crank-Nicolson method.

Exercise 2: Investigating the Crank-Nicolson method
a) Determine the Butcher table for the Crank-Nicolson method.

Solution. We can rewrite Crank-Nicolson using two stage-derivatives k1 and k2 as follows.
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k1 = f(tk, yk) = f(tk + 0 · τ, yk + τ(0 · k1 + 0 · k2))
k2 = f(tk+1, yk+1) = f(tk + 1 · τ, yk + τ( 1

2k1 + 1
2k2))

yk+1 = yk + τ( 1
2k1 + 1

2k2)

and thus the Butcher table is given by
0 0 0
1 1

2
1
2

1
2

1
2

.

b) Use the order conditions discussed in the RungeKuttaNuMeODE.ipynb to show that Crank-Nicolson is
of consistency/convergence order 2.

c) Determine the stability function R(z) associated with the Crank-Nicolson method and discuss the
implications on the stability of the method for the test problem (1).

Solution. With f(t, y) = λy,

yk+1 = yk + τ

2λyk+1 + τ

2λyk

and thus

yk+1 =
1 + τλ

2
1− τλ

2
yk

and therefore
R(z) =

1 + z
2

1− z
2
.

As result, the stability domain (−∞, 0] ⊂ S, in particular, Crank-Nicolson is stable for our test problem,
independent of the choice of the time-step.

d) Implement the Crank-Nicolson method to solve the test problem (1) numerically.

Hint. You can start from implicit_euler function implemented earlier, you only need to change a
single line.

e) Check the convergence rate for your implementation by solving (1) with λ = 2, t0 = 1, T = 2 and
y0 = 1 for various time step sizes and compute the corresponding experimental order of convergence
(EOC)

f) Finally, rerun the stability experiment from Section 1 with Crank-Nicolson.

4 The θ-method
All the numerical methods we discussed here can be combined into one single method, known as the
θ-method.

Definition 4.1. The θ-method.

For θ ∈ [0, 1], the one-step θ method is defined by

yi+1 = yi + θf(ti+1, yi+1) + (1− θ)f(ti, yi), (8)

so for a given θ, a weighted sum/convex combination of f(ti+1, yi+1) and f(ti, yi) is taken.

Observation.
Note that for

• θ = 0, we obtain the explicit/forward Euler method,
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• θ = 1, we obtain the implicit/backward Euler method,

• θ = 1
2 , we obtain the Crank-Nicolson method.
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