
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Partial differential equations and finite difference
methods.

Anne Kværnø, modified by André Massing

Apr 30, 2020

1 Introduction
In this note the finite difference method for solving partial differential equations (PDEs) will be pre-
sented.

Roughly speaking, a finite difference method is composed by the following steps:

1. Discretize the domain on which the equation is defined.

2. On each grid point, replace the derivatives with an approximation, using the values in neighbouring
grid points.

3. Replace the exact solutions by its approximations.

4. Solve the resulting system of equations.

We will first see how to find approximations to the derivative of a function, and then how this can be
used to solve boundary value problems like

u′′ + p(x)u′ + q(x)u = r(x), a ≤ x ≤ b, u(a) = ua, u(b) = ub,

and time dependent partial differential equations with the heat equation

ut = uxx

as the example of choice. The technique described here is however applicable several other PDEs, so
please concentrate on understanding the underlying idea.

2 Numerical differentiation.
This is the main tool for finite difference methods.

Given a sufficiently smooth function f . How can we find an approximation to f ′(x) or f ′′(x) in some
given point x, just by using evaluation of the function itself?

The derivative of of f is defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

Given a sufficiently small value of h, the right hand side can be used an approximation to f ′(x). A small
collection of the most used approximations to f ′(x) is:

https://wiki.math.ntnu.no/tma4100/tema/differentiation?&#definisjonen_av_den_deriverte_gitt_som_en_grenseverd

f ′(x) ≈


f(x+ h)− f(x)

h
, Forward difference,

f(x)− f(x− h)
h

, Bakward difference,
f(x+ h)− f(x− h)

2h , Central difference.

The first one is taken directly from the definition, so is the second, and the third is just the mean of the
first two. A common approximation to the second derivative is

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)
h2 .

Numerical example 1: Test the method on the function f(x) = sin(x) at the point x = π
4 . Compare

with the exact derivative. Try different step sizes, e.g. h = 0.1, h = 0.01, h = 0.001. Notice how the error
in each case change with h.

Numerical differentiation

Forward difference
def diff_forward(f, x, h=0.1):

return (f(x+h)-f(x))/h

Backward difference
def diff_backward(f, x, h=0.1):

return (f(x)-f(x-h))/h

Central difference for f’(x):
def diff_central(f, x, h=0.1):

return (f(x+h)-f(x-h))/(2*h)
end of diff_central

Central difference for f’’(x):
def diff2_central(f, x, h=0.1):

return (f(x+h)-2*f(x)+f(x-h))/h**2
end of diff2_central

Numerical example 1
x = pi/4;
df_exact = cos(x)
ddf_exact = -sin(x)
h = 0.1
f = sin
df = diff_forward(f, x, h)
print(’Approximations to the first derivative’)
print(’Forward difference: df = {:12.8f}, Error = {:10.3e} ’.format(df, df_exact-df))
df = diff_backward(f, x, h)
print(’Backward difference: df = {:12.8f}, Error = {:10.3e} ’.format(df, df_exact-df))
df = diff_central(f, x, h)
print(’Central difference: df = {:12.8f}, Error = {:10.3e} ’.format(df, df_exact-df))
print(’Approximation to the second derivative’)
ddf = diff2_central(f, x, h)
print(’Central difference: ddf= {:12.8f}, Error = {:10.3e} ’.format(ddf, ddf_exact-ddf))

2.1 Error analysis
In this case the error analysis is quite simple: Do a Taylor expansion of the error around x. The Taylor
expansion becomes a power series in h.

The expansion for the error of the forward difference is:

e(x;h) = f ′(x)− f(x+ h)− f(x)
h

= f ′(x)−
f(x) + f ′(x)h+ 1

2f
′′(ξ)h2 − f(x)

h
= −1

2f
′′(ξ)h

2

where ξ ∈ (x, x+ h).

The expansion for the error of the central difference is slightly more complicated:

e(x;h) = f ′(x)− f(x+ h)− f(x− h)
2h

= f ′(x)

−
(
f(x) + f ′(x)h+ 1

2f
′′(x)h2 + 1

6f
′′′(ξ1)h2)− (f(x)− f ′(x)h+ 1

2f
′′(x)h2 − 1

6f
′′′(ξ2)h2)

2h
= − 1

12
(
f ′′′(ξ1) + f ′′′(ξ2)

)
h2

= −1
6f
′′′(η)h2, η ∈ (x− h, x+ h),

where the two remainder terms have been combined by the intermediate value theorem (Result 2 at
the end of Preliminaries). The error for the approximation of the second order derivative can be found
similarly.

The order of an approximation is p if there exist a constant C independent on h such that

|e(h;x) ≤ Chp,

see Preliminaries.

In practice, it is sufficient to show that the power expansion of the error satisfies

e(x, h) = Cph
p + Cp+1h

p+1 + · · · , Cp 6= 0

The forward and backward approximations are of order 1, the central differences of order 2.

We are going to use these formulas a lot in the sequel, so let us just summarize the results, including the
error terms:

3

Difference formulas for derivatives:

f ′(x) =



f(x+ h)− f(x)
h

− h

2 f
′′(ξ), Forward difference

f(x)− f(x− h)
h

+ h

2 f
′′(ξ), Backward difference

f(x+ h)− f(x− h)
2h − h2

6 f
′′′(ξ). Central difference

f ′′(x) = f(x+ h)− 2f(x) + f(x− h)
h2 − h2

12f
(4)(ξ), Central difference

3 Two point boundary problems (BVP)
Given a two point boundary value problem:

u′′ + p(x)u′ + q(x)u = r(x), a ≤ x ≤ b, u(a) = ua, u(b) = ub,

where p, q are given functions of x and the boundary values ua and ua are given constants.

A finite difference method for this problem is constructed by the following steps:

Step 1: Given the interval [a, b]. Choose N, let h = (b− a)/N and let xi = a+ ih, i = 0, 1, . . . , N .

Step 2: For each inner grid point xi, i = 1, . . . , N − 1, replace the derivatives by their approximations
in the BVP. The result is:

u(xi + h)− 2u(xi) + u(xi − h)
h2 + p(xi)

u(xi + h)− u(xi − h)
2h + q(xi)u(xi) +O(h2) = r(xi)

for each i = 1, 2 . . . , N − 1, and the term O(h2) represents the errors in the difference formulas.

Step 3: Ignore the error term, and replace the exact solution u(xi) by its numerical (and still unknown)
approximation Ui:

Ui+1 − 2Ui + Ui−1

h2 + p(xi)
Ui+1 − Ui−1

2h + q(xi)Ui = r(xi), i = 1, . . . , N − 1.

This is the discretization of the BVP. If we know include the two boundary values as equations, the
discretization is a linear system of equations

AU = b,

where A er en N + 1 × N + 1 matrix and U = [U0, . . . , UN]T . Or more specific, by multiplying the
equations by h2 we end up with:

A =



1 0
v1 d1 w1

v2 d2 w2

v3
.
. wN−2

vN−1 dN−1 wN−1

0 1


with

vi = 1− h

2 p(xi)

di = −2 + h2q(xi)

wi = 1 + h

2 p(xi)

.

4

The right hand side b is given by

b = [ua, h2r(x1), . . . , h2r(xN−1), ub]T .

Obviously, the first and last equations are trivial to solve, and is therefore often included in the right hand
side.

Step 4: Solve AU = b with respect to U.

Example 1: Given the equation

u′′ + 2u′ − 3u = 9x, u(0) = ua = 1, u(1) = ub = e−3 + 2e− 5 = 0.486351,

with exact solution u(x) = e−3x + 2ex − 3x− 2.

Choose N , let h = 1/N . Use the central differences for u′ and u′′, such that

u(xi + h)− 2u(xi) + u(xi − h)
h2 + 2u(xi + h)− u(xi − h)

2h − 3u(xi) +O(h2) = 9xi, i = 1, . . . , N

Let Ui ≈ u(xi). Multiply by h2 on both sides, include U0 = ua og UN = ub and clean the mess:

U0 = 1
(1− h)Ui−1 + (−2− 3h2)Ui + (1 + h)Ui+1 = 9xih2, i = 1, · · ·N − 1,

UN = 0.486351

To be even more concrete, for N = 4, we get h = 0.25. The linear system of equations becomes



1 0 0 0 0
0.75 −2.1875 1.25 0 0

0 0.75 −2.1875 1.25 0
0 0 0.75 −2.1875 1.25
0 0 0 0 1





U0

U1

U2

U3

U4


=



1.
0.140625
0.28125
0.421875

0.48635073


.

The first and the last equation is trivial to solve, so in practice you have a system of 3 equations in 3
unknowns,


−2.1875 1.25 0

0.75 −2.1875 1.25
0 0.75 −2.1875




U1

U2

U3

 =


0.140625− 0.75 · 1

0.28125
0.421875− 1.25 · 0.48635073

 ,

with the solution
U1 = 0.293176, U2 = 0.025557, 0.093820.

For comparison, the exact solution in these points are:

u(0.25) = 0.290417, u(0.5) = 0.020573, u(0.75) = 0.089400.

5

3.1 Implementation
For simplicity, the implementation below is only done for BVPs with constant coefficients, that is p(x) = p
and q(x) = q. This makes the diagonal, sub- and super-diagonals constant, except at the first and the last
row. An extra function is included to construct matrices of the form A = tridiag{v, d, w}.

The implementation consist of

1. Choose N , let h = (b− a)/N and xi = a+ ih, i = 0, . . . , N .

2. Construct the matrix A ∈ RN+1×N+1 and the vector b ∈ RN+1. The matrix A is tridiagonal, and
except from the first and last row, has the elements v = 1− h

2 p below the diagonal, d = −2 + h2q as
diagonal elements and w = 1 + h

2 p above the diagonal.

3. Construct the vector b = [b0, . . . , bN]T with elements bi = h2r(xi) for i = 1, . . . , N − 1.

4. Modify the first and the last row of the matrix A and the first and last element of the vector b,
depending on the boundary conditions.

5. Solve the system AU = b.

def tridiag(v, d, w, N):
Help function
Returns a tridiagonal matrix A=tridiag(v, d, w) of dimension N x N.
e = ones(N) # array [1,1,...,1] of length N
A = v*diag(e[1:],-1)+d*diag(e)+w*diag(e[1:],1)
return A

Example 1, BVP

Define the equation
u’’ + p*u’ + q*u = r(x) on the interval [a,b]
Boundary condition: u(a)=ua and u(b)=ub

p = 2
q = -3
def r(x):

return 9*x
a, b = 0, 1
ua, ub = 1, exp(-3)+2*exp(1)-5

The exact solution (if known)
def u_eksakt(x):

return exp(-3*x)+2*exp(x)-3*x-2

Set up the discrete system
N = 4 # Number of intervals

Start the discretization
h = (b-a)/N # Stepsize
x = linspace(a, b, N+1) # The gridpoints x_0=a, x_1=a+h, , x_N=b

Make a draft of the A-matrix (first and last row have to be adjusted)
v = 1-0.5*h*p # Subdiagonal
d = -2+h**2*q # Diagonal
w = 1+0.5*h*p # Superdiagonal
A = tridiag(v, d, w, N+1)

Make a draft of the b-vector
b = h**2*r(x)

Modify the first equation (left boundary)
A[0,0] = 1
A[0,1] = 0
b[0] = ua

6

Modify the last equation (right boundary)
A[N,N] = 1
A[N,N-1] = 0
b[N] = ub

U = solve(A, b) # Solve the equation

To verify the calculations done above, print the matrix A, the vector b and the numerical solution
U.

Print the matrix A, the right hand side b the numerical and exact solution
print(’A =\n’, A)
print(’\nb =\n ’, b)
print(’\nU =\n ’, U)
print(’\nu(x)=\n’, u_eksakt(x))

Plot the solution of the BVP
xe = linspace(0,1,101)
plot(x,U,’.-’)
plot(xe, u_eksakt(xe),’:’)
xlabel(’x’)
ylabel(’u’)
legend([’Numerisk’,’Eksakt’])
title(’øLsningen av et to-punkt randverdiproblem.’);

Plot the error |u(x)-U| in the gridpoints
error = abs(u_eksakt(x)-U)
plot(x, error,’.-’)
xlabel(’x’)
ylabel(’error’)
title(’Error: u(x)-U’);
print(’Max error = {:.3e}’.format(max(abs(error))))

3.2 Boundary conditions
To get a unique solution of a BVP (or a PDE), some information about the solution, usually given on the
boundaries has to be known. The most common boundary conditions are:

1. Dirichlet condition: The solution is known at the boundary.

2. Neumann condition: The derivative is known at the boundary.

3. Robin (or mixed) condition: A combination of those.

In the example above, Dirichlet conditions were used. We will now see how to handle Neumann conditions.
Robin conditions can be treated similarly.

Given the BVP with a Neumann condition at the left boundary:

u′′ + p(x)u′ + q(x)u = r(x), a ≤ x ≤ b, u′(a) = u′a, u(b) = ub.

Here, u′a is some given value. In this case, the solution u(a) and its corresponding approximation U0 are
unknown, and we need some difference formula also for the point a = x0. The simplest option is to use a
forward difference

u′a = u(x1)− u(x0)
h

+O(h) ⇒ U1 − U0

h
= u′a

but this is only a first order approximation, and thus lower accuracy is to be expected. We could also use
a second order approximation using the values in the grid points x0, x1 and x2, but this will ruin the nice
tridiagonal structure of the coefficient matrix. Instead, use the idea of a false boundary:

7

Assume that the solution can be stretched outside the boundary x = a, all the way to a fictitious grid
point x−1 = a− h, where we also assume there is an approximate and equally fictitious approximation
U−1 to u(x−1). Then we have two difference formulas in the point a, one for the BVP itself and a central
difference for the boundary conditions:

U1 − 2U0 + U−1

h2 + p(x0)U1 − U−1

2h + q(x0)U0 = r(x0)

U1 − U−1

2h = u′a

Solve the second equation with respect to U−1, insert this into the first equation which then becomes:

2U1 − 2U0 − 2hu′a
h2 + p(x0)u′a + q(x0)U0 = r(x0).

So the only thing that has changed is the first equation. And since central differences have been used
both for the BVP and the boundary condition, the overall order of this approximation can be proved to
be 2.

Example 2: Given the same example as before, but now with a Neumann condition at the left
boundary:

u′′ + 2u′ − 3u = 9x, u′(0) = u′a = −4, u(1) = ub = −2e−3 + e− 5 = 0.48635073,

with exact solution u(x) = e−3x − 2ex − 3x− 2.

The modified difference equation at the boundary x0 = 0 is:

2U1 − 2U0 − 2u′ah
h2 + 2u′a − 3U0 = 0.

Multiply this equation by h2, and include the equation as the discretization for the grid point x0.

(−2− 3h2)U0 − 2U1 = (2h− 2h2)u′a
(1− h)Ui−1 + (−2− 3h2)Ui + (1 + h)Ui+1 = 9h2xi, i = 1, · · ·N − 1.

UN = ub,

which, for N = 4 og h = 0.25 becomes:



−2.1875 2 0 0 0
0.75 −2.1875 1.25 0 0

0 0.75 −2.1875 1.25 0
0 0 0.75 −2.1875 1.25
0 0 0 0 1





U0

U1

U2

U3

U4


=



−1.5
0.140625
0.28125
0.421875

0.48635073


.

The solution of this is

U0 = 0.92103219, U1 = 0.25737896, U2 = 0.01029386, U3 = 0.08858688.

Numerical exercises:

1. Modify the code above to solve this problem. Use N = 4 to check your solution, but try also N = 10
and N = 20.

2. Modify the code above to solve the same BVP, but now with the left boundary condition
u′(a) + u(a)/4 = 0.

8

4 The heat equation
In this section we will see how to solve the heat equation by finite difference methods. It should however
be emphasized that the strategies applies to a lot of time-dependent PDEs, the heat equation is just an
example.

Given the equation, well known from the first part of this course:

ut = uxx, 0 ≤ x ≤ 1
u(0, t) = g0(t), u(1, t) = g1(t), Boundary conditions
u(x, 0) = f(x) Initial conditions

The equation is solved from t = 0 to t = tend.

4.1 Semi-discretization
This is a technique which combines the discretization of boundary problems explained above with the
techniques for solving ordinary differential equations.

The idea is as follows:

Step 1: Make a discretization of the interval in the x-direction. Choose some M , let ∆x = 1/M (since
the interval is [0, 1]) and the grid points are xi = i∆x, i = 0, 1, . . . ,M .

Note that for each grid point xi the solution u(xi, t) is a function of t alone.

Step 2: Fix some arbitrary point time t, and make a discretization of the right hand side of the PDE.
Using central differences to approximate uxx, this will give

∂u

∂t
(xi, t) = u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

∆x2 +O(∆x2).

Step 3: Ignore the error term O(∆x2) and replace u(xi, t) with the approximation Ui(t) in the formula
above. The result is

U ′i(t) = Ui+1(t)− 2Ui(t) + Ui−1(t)
∆x2 , i = 1, 2, . . . ,M − 1,

where U ′i(t) = dUi(t)/dt. And this, together with the boundary conditions U0(t) = g0(t), UM (t) = g1(t)
and the initial condition Ui(0) = f(xi), i = 0, 1, . . . ,M forms a well defined system of ordinary differential
equations.

This system is usually called a semi-discretization of the PDE.

Step 4: Solve the system of ODEs by the method of your preference.

The explicit Euler method with step size ∆t applied to these ODEs is:

Un+1
i = Uni + r

(
Uni+1 − 2Uni + Uni−1

)
, i = 1, 2, . . . ,M − 1, where r = ∆t

∆x2 .

So Uni ≈ u(xi, tn) where tn = n∆t, and to distinguish between the indices representing space and time,
we have used the time indices n as superscripts.

Let us test this algorithm on two examples.

9

Numerical examples 1: Solve the heat equation ut = uxx on the interval 0 < t < 1.

u(x, 0) = sin(πx), Initial value
g0(t) = g1(t) = 0. Boundary values

Use stepsizes ∆t = 1/N and ∆x = 1/M .

The exact solution of this problem is given by

u(x, t) = e−π
2t sin(πx).

Numerical example 2: Repeat example 1, but now with the initial values

u(x, 0) =
{

2x 0 ≤ x ≤ 0.5,
2(1− x) 0.5 < x ≤ 2− 2x,

In this case, the exact solution is not given.

Run the codes below with

1. M = 4, N = 20.

2. M = 8, N = 40.

3. M = 16, N = 80.

Both initial values are already implemented.

4.2 Implementation
We first include a function for plotting the solution.

def plot_heat_solution(x, t, U, txt=’Solution’):
Help function
Plot the solution of the heat equation
fig = figure()
ax = fig.gca(projection=’3d’)
T, X = meshgrid(t,x)
ax.plot_wireframe(T, X, U)
ax.plot_surface(T, X, U, cmap=cm.coolwarm)
ax.view_init(azim=30) # Rotate the figure
xlabel(’t’)
ylabel(’x’)
title(txt);

Define the problem, this time in terms of initial values and boundary conditions.

Define the problem

Initial condition
def f1(x): # Example 1

return sin(pi*x)

def f2(x): # Example 2
y = 2*x
y[x>0.5] = 2-2*x[x>0.5]
return y

f = f1

Boundary conditions
def g0(t):

return 0
def g1(t):

return 0

10

The main part of the code is:

Solve the heat equation by a forward difference in time (forward Euler)
#
M = 4 # Number of intervals in the x-direction
Dx = 1/M
x = linspace(0,1,M+1) # Gridpoints in the x-direction

tend = 0.5
N = 20 # Number of intervals in the t-direction
Dt = tend/N
t = linspace(0,tend,N+1) # Gridpoints in the t-direction

Array to store the solution
U = zeros((M+1,N+1))
U[:,0] = f(x) # Initial condition U_{i,0} = f(x_i)

r = Dt/Dx**2
print(’r =’,r)

Main loop
for n in range(N):

U[1:-1, n+1] = U[1:-1,n] + r*(U[2:,n]-2*U[1:-1,n]+U[0:-2,n])
U[0, n+1] = g0(t[n+1])
U[M, n+1] = g1(t[n+1])

Plot the numerical solution
plot_heat_solution(x, t, U)

Plot the error from example 1
def u_exact(x,t):

return exp(-pi**2*t)*sin(pi*x)
T, X = meshgrid(t, x)
error = u_exact(X, T) - U
plot_heat_solution(x, t, error, txt=’Error’)
print(’Maximum error: {:.3e}’.format(max(abs(error.flatten())))) # Maksimal feil over hele arrayet

The solution is stable for M = 4, N = 20, and apparently unstable for M = 16, N = 80. Why?

4.3 Stability analysis
The semi-discretized system

U̇i(t) = Ui+1(t)− 2Ui(t) + Ui−1(t)
∆x2 , i = 1, 2, . . . ,M − 1, U0(t) = g0(t), UM (t) = g1(t),

is a linear ordinary differential equation:

U̇ = 1
∆x2

(
AU + g(t)

)
,

where

U =


U1

U2
...

UM−1

 , A =


−2 1

1
.
. 1

1 −2

 and g(t) =



g0(t)
0
...
0

g1(t)



11

Stability requirements for such problems were discussed in the note on stiff ordinary differential equation.
We proved there that the stability depends on the eigenvalues λk of the matrix 1

∆x2A. For the forward
Euler method, it was proved that the step size has to chosen such that −2 ≤ ∆tλk ≤ 0 for all λk.
Otherwise, the numerical solution will be unstable.

It is possible to prove that the eigenvalues of the matrix A is given by

λk = −4 sin2 (kπ
M

)
, k = 1, · · · ,M − 1.

So all the eigenvalues λk of 1
∆x2A satisfy

− 4
∆x2 < λk < 0.

The numerical solution is stable if ∆t < −2/λk for all k, that means whenever

r = ∆t
∆x2 ≤

1
2 .

Exercise: Repeat the two experiments above (for the two different initial values) to justify the bound
above. Use M = 16, and in each case find the corresponding r and observe from the experiments whether
the solution is stable or not.

1. Let N = 256.

2. Let N = 128.

3. Let N = 250.

In the last case, it seems like the metod is unstable for the first initial value, and unstable for the
second. Do you have any idea why? (Both solutions will be unstable if integrated over a longer time
periode).

Hint: Relate to the Fourier expansion solution of the heat equation from the first part of the course.

4.4 Implicit methods
The semi-discretized system is an example of a stiff ODE, which can only be handled reasonable efficiently
by A(0)-stable methods, like implicit Euler or the trapezoidal rule, see the note on stiff ODEs.

Implicit Euler. The implicit Euler method for the discritized system U̇ = 1
∆x2

(
AU + g(t)

)
is given

by

Un+1 = Un + r AUn+1 + r g(tn+1), med r = ∆t
∆x2 .

where Un = [Un1 , Un2 , . . . , UnM−1 and Uni ≈ u(xi, tn).

For each time step, the following system of linear equations has to be solved:

(IM−1 − r A)Un+1 = Un + r g(tn+1),

where IM−1 is the identity matrix of dimension (M − 1)× (M − 1).

The error in the gridpoints can be shown to be O(∆t+ ∆x2).

12

Crank-Nicolson (trapezoidal rule). The trapezoidal rule applied to the semi-discretized system is
often referred to as Crank-Nicolson’s method. The method is A(0)-stable and of order 2 in time, so we can
expect better accuracy. The method is written as:

Un+1 = Un + ∆t
2∆x2A

(
Un+1 + Un

)
+ ∆t

2∆x2

(
g(tn) + g(tn+1)

)
.

So for each timestep the following system of equations has to be solved with respect to Un:

(IM−1 −
r

2A)Un+1 = (IM−1 + r

2A)Un + r

2
(
g(tn) + g(tn+1

)
, r = ∆t

∆x2

The error in the gridpoints can be shown to be O(∆t2 + ∆x2).

Implementation. It is possible to solve the system of ODEs directly by the methods developed in the
note on stiff ODEs, or by using some other existing ODE solver. For nonlinear problems, this is often
advisable (but not always). Mostly for the purpose of demonstration, the implicit Euler method as well as
the Crank-Nicolson scheme is implemented directly in the following code.

For each time step, a system of linear equation has to be solved:

KUn+1 = b

where

Implicit Euler:

K = IM−1 − rA, b = Un + r[g0(tn+1), 0, . . . , 0, g1(tn+1)]T

Crank-Nicolson:

K = IM−1 −
r

2A, b = (IM−1 + r

2A)Un + r

[
1
2(g0(tn) + g0(tn+1)), 0, . . . , 0, 1

2(g1(tn) + g1(tn+1))
]T
.

The methods can of course be applied to the problems from Numerical examples 1 and 2. But for the fun
of it, we now include a problem with nontrivial boundary conditions.

Numerical example 3: Solve the equation

ut = uxx, u(0, t) = e−π
2t, u(1, t) = −e−π

2t, u(x, 0) = cos(πx).

up to tend = 0.2 by implicit Euler and Crank-Nicolson. Plot the solution and the error. The exact solution
is u(x, t) = e−π

2t cos(πx).

Use N = M , and M = 10 and M = 100 (for example). Notice that there are no stability issues, even for
r large. Also notice the difference in accuracy for the two methods.

Apply implicit Euler and Crank-Nicolson on
the heat equation u+t=u_{xx}

Define the problem of example 3
def f3(x):

return cos(pi*x)

Boundary values
def g0(t):

return exp(-pi**2*t)
def g1(t):

return -exp(-pi**2*t)

13

Exact solution
def u_exact(x,t):

return exp(-pi**2*t)*cos(pi*x)

f = f3

Choose method
method = ’iEuler’
method = ’CrankNicolson’

M = 100 # Number of intervals in the x-direction
Dx = 1/M
x = linspace(0,1,M+1) # Gridpoints in the x-direction

tend = 0.5
N = M # Number of intervals in the t-direction
Dt = tend/N
t = linspace(0,tend,N+1) # Gridpoints in the t-direction

Array to store the solution
U = zeros((M+1,N+1))
U[:,0] = f(x) # Initial condition U_{i,0} = f(x_i)

Set up the matrix K:
A = tridiag(1, -2, 1, M-1)
r = Dt/Dx**2
print(’r = ’, r)
if method is ’iEuler’:

K = eye(M-1) - r*A
elif method is ’CrankNicolson’:

K = eye(M-1) - 0.5*r*A

Utmp = U[1:-1,0] # Temporary solution for the inner gridpoints.

Main loop over the time steps.
for n in range(N):

Set up the right hand side of the equation KU=b:
if method is ’iEuler’:

b = copy(Utmp) # NB! Copy the array
b[0] = b[0] + r*g0(t[n+1])
b[-1] = b[-1] + r*g1(t[n+1])

elif method is ’CrankNicolson’:
b = dot(eye(M-1)+0.5*r*A, Utmp)
b[0] = b[0] + 0.5*r*(g0(t[n])+g0(t[n+1]))
b[-1] = b[-1] + 0.5*r*(g1(t[n])+g1(t[n+1]))

Utmp = solve(K,b) # Solve the equation K*Utmp = b

U[1:-1,n+1] = Utmp # Store the solution
U[0, n+1] = g0(t[n+1]) # Include the boundaries.
U[M, n+1] = g1(t[n+1])

plot_heat_solution(x, t, U)

T, X = meshgrid(t, x)
error = u_exact(X, T) - U
plot_heat_solution(x, t, error, txt=’Error’)
print(’Maximum error: {:.3e}’.format(max(abs(error.flatten()))))

14

	Introduction
	Numerical differentiation.
	Error analysis

	Two point boundary problems (BVP)
	Implementation
	Boundary conditions

	The heat equation
	Semi-discretization
	Implementation
	Stability analysis
	Implicit methods

