

The deadline for handing in solutions is Monday 25th January, 12:00.

1 a) Let $x \in \mathbb{R}^n$ be a real vector. Show that

$$\lim_{p \to \infty} \|x\|_p = \max_{1 \le i \le n} |x_i|.$$

You may assume that

- (*): There is a unique j such that if $i \neq j$ then $|x_i| < |x_j|$.
- **b)** (Optional) Show that the statement holds even if (\star) does not hold.
- c) The closed unit-disc \mathbb{D}_p with respect to the *p*-norm $\|\cdot\|_p$ is the set

$$\mathbb{D}_p = \{ (x, y) \in \mathbb{R}^2 : ||(x, y)||_p \le 1 \}.$$

Visualize the disc \mathbb{D}_p for some values of p, at least $p = 1, 2, \infty$.

Hint: Create a dense grid of points $\{(x_i, y_j | i, j = 1, ..., N)\}$, that is a grid with a small spacing. Plot only those points with $||(x_i, y_j)||_p \leq 1$. You can calculate the *p*-norm of a NumPy array v by scipy.linalg.norm(v,p). Replace p by the value *p* you want to use. If you want $p = \infty$ you write numpy.inf.

- 2 Recall the Gram-Schmidt orthogonalization process: Say you have a vector space V with a scalar product $\langle \cdot, \cdot \rangle$ and corresponding norm $\|\cdot\|$. For $n \leq \dim(V)$ linearly independent vectors $v_1, ..., v_n$ we can construct a set of orthonormal vectors $u_1, ..., u_n$ by
 - 1. $u_1 = v_1 / ||v_1||$.
 - 2. For m = 2, ..., n:

$$w_m = v_m - \sum_{j=1}^{m-1} \langle v_m, u_j \rangle u_j.$$
$$u_m = w_m / ||w_m||.$$

Consider the vector space $\mathbb{P}^2[0,1]$ of polynomials with degree $\leq 2,$ with the scalar product

$$\langle p,q \rangle = \int_0^1 p(x)q(x)\mathrm{d}x$$

and corresponding norm $||p|| = \langle p, p \rangle^{1/2}$. Starting from the set of vectors $p_1 = 1$, $p_2 = x$, $p_3 = x^2$ use the Gram-Schmidt process to construct an orthonormal set of vectors q_1, q_2, q_3 .

Hint: You might find some help from lecture notes in Calculus 3:

https://www.math.ntnu.no/emner/TMA4110/2020h/notater/9-projeksjon.pdf Note however that they do not normalize their vectors and that they start with vector x instead of 1.

3 Consider the space $L^2[0, 2\pi]$ of square-integrable functions on $[0, 2\pi]$ with the scalar product

$$\langle f,g \rangle = \int_0^{2\pi} f(x)g(x)\mathrm{d}x.$$

We define the functions $f_n(x) = \sin(nx), g_m(x) = \cos(mx)$. For integers $m, n \in \mathbb{Z}$ calculate

- **a)** $\langle g_0, g_0 \rangle$.
- **b)** $\langle f_n, f_n \rangle, \quad n \neq 0,$
- c) $\langle f_m, f_n \rangle$, $m \neq n$,
- **d**) $\langle f_m, g_n \rangle$.

Hint: Recall the trigonometric identities

$$2\sin(\theta)\sin(\phi) = \cos(\theta - \phi) - \cos(\theta + \phi),$$

$$2\sin(\theta)\cos(\phi) = \sin(\theta + \phi) + \sin(\theta - \phi).$$

4 Consider the space C[0,1] of continuous functions defined on [0,1].

a) Show that $\|\cdot\|_C$ defined by

$$||f||_C = \max_{x \in [0,1]} |f(x)|$$

is a norm.

b) Define $\|\cdot\|_{\star}$ by

$$\|f\|_{\star} = \max_{x \in [0,0.5]} |f(x)|.$$

Is $\|\cdot\|_{\star}$ a norm? If not, does it satisfy any of the properties of norms?