exercise_03
January 30, 2021

[2]: | from IPython.core.display import HTML
def css_styling():
try:
with open("tma4125.css", "r") as f:
styles = f.read()
return HTML(styles)
except FileNotFoundError:
pass #Do nothing

# Comment out next line and execute this cell to restore the default notebook,
—style
css_styling()

1 Exercises 3

Submission deadline: Feb 15 2021 at 12:00 (noon)

In this exercise set we will construct and analyze quadrature rules. For guidance on quadrature
rules, please read the lecture notes. Make sure to run the code below to get all the important
modules, and to make the plots look nice.

[1]: | Ymatplotlib inline

from numpy import *

from matplotlib.pyplot import *

from math import factorial

newparams = {'figure.figsize': (8.0, 4.0), 'axes.grid': True,
'lines.markersize': 8, 'lines.linewidth': 2,
'font.size': 14}

rcParams.update (newparams)

1.1 1) Analyzing the composite Simpson’s rule

Simpson’s rule is defined as

S[fI(xic1,xi) = Z(f(xic1 +4f(xio1/2) + f(xi))

o=



where h = x; — x;_1 and x;_q 5 = 75

a)

First show that the resulting composite Simpson’s rule is given by

/abfdx ~ CSR[f]([xi-1, xi)i21) = 21f(x0) +4f (xXx,,,) +2f (x1) +4f (x3/2) +2f (x2) + ..
+2f(xpm-1) + 4f<xxm—1/2> + f(xm)]-

b) Implement the composite Simpson’s rule. Use this function to compute an approximate value
of integral

! 2
1(0,1) = / cos (2x) = = = 0.636619.....
0

for m = 4,8,16,32,64 corresponding to $ h = 27{-2}, 2°{-3}, 2"{-4}, 2"{-5}, 2*{-6}$. Tabulate the cor-
responding quadrature errors |1(0,1) — Q(0,1)|. Plot the errors against h. What do you observe?
How does it compare to the composite trapezoidal rule?

Doubling the number of sub-intervals decreases the error by a factor of 16. This suggests that the
error of the composite Simpson rule is Cm~* = Ch*.

¢) Recall that the error of Simpson’s rule on a single interval is given by

_ :_(b—ﬂ)S (4)
[11£)(a,b) = S[f](a,b)| = =2 f9(©)

for some ¢ € [a,b].
Use this to show that the error of the composite Simpson rule can be bounded by
M4 (b — (1)5 M4

T[] = CSRUf]| < Sggs =i~ = 555" (0 —4) (3)

where My = maXgc(qp) F@ )]

1.2 2) Gaussian Quadrature

In this exercise we will construct a Gaussian quadrature rule with 3 nodes. We will take it step by
step, so don’t worry if you do not feel like an expert on Gaussian quadrature.

To make your life easy, we will use the sympy python module for symbolic mathematics to per-
form tasks such as (symbolic) integration and root finding of low order polynoms. In particular
look at integrate and solve submodules.

The first step in constructing a Gaussian quadrature is finding the correct orthogonal polynomial.
The nodes of the quadrature rule will be the roots of some polynomial. Since we are looking
for 3 nodes, this means that the polynomial should have 3 roots, and hence we are looking for a
third-order polynomial.


https://docs.sympy.org/latest/index.html
https://docs.sympy.org/latest/modules/integrals/integrals.html
https://docs.sympy.org/latest/modules/solvers/solvers.html

The polynomial, call it p3, should be orthogonal on the interval [0, 3] to all polynomials of order 2
or less. We now create this polynomial.

Start with the 4 polynomial “basis” functions

Remember that on the interval [0, 3] we have the inner product

(p) = [ p(x)q(x)

ol = (] peora)

We can now construct orthogonal polynomials by using Gram-Schmidt orthogonalization.

and the norm

k—1 .
Pk=¢k—ZMP‘

Syl P

We start out by setting po = 1. In order to calculate p; we first need to calculate
3 3 xz 3 9
(pr,p0) = [ ¢r(2) polxydx = [ x-1dx = H
0 0 2,

We also need to calculate

3 3
Ipoll> = [ po(w2ax = ["1-1dx =3,

Therefore,

(¢vpo) ~_ 92 . 3 _ 3
pal? P70 T T Ty

p1=¢1—

a)
Use Gram-Schmidt orthogonalization to construct p, and p3.

We can use the Python package SymPy to check our calculations. The code below helps you by
defining the inner product and shows how to define polynomials.

[3]: from sympy.abc import x
from sympy import integrate

a=0
b=3

#Define the inner poduct
def scp(p,q):



return integrate(p*q, (x, a, b))

#Define polynomials
po =1
pl = x

#Calculate the inner product and print <t.
print (scp(p0,pl))
9/2
b) Use the function scp to check whether the polynomials you calculated are in fact orthogonal.
¢) Find the 3 roots of ps.
Hints:

* Analytical approach: If you want to do it analytical, use the fact that one root is

o2
2

to find a second order polynomial p, such that pa(x) - (x —3/2) = p3(x).
¢ Computational approach: If you want to use a computational algebra system/symbolic cal-
culator you Import the solve from sympy (Have a look at the solve submodules.)

d)
Let’s denote the three roots of p3 by x1, x2, x3.

Construct the three Lagrange polynomials L1, Ly, L3 satisfying Li(xj) = J;j, that is
1, i=j,
Li(xj) = =/
0, i#].
Then calculate the weights

3
wi:/ Li(x)dx.
0

Hint: You can use the SymPy function integrate to check your calculations.
e)

Now recheck your calculations as follows. The Gauss-Legendre rule for the interval [—1, 1] with 3

quadrature points is given by
02 3 3
{xi i=0 — {—\/;,0/ \/;}
~12 _ [5 85
{@i}io=1{5573

Now transfer this quadrature rule to the interval [0, 3] and confirm that you get the same quadra-
ture points and weights you computed in 2a)-2d).


https://docs.sympy.org/latest/modules/solvers/solvers.html

f)

Finally, write down the quadrature rule on the form

GQRIf](0,3) = iwjf(x]')-
L

and check that this Gaussian quadrature rule has degree of exactness equal to 5.

Hint: Use the R function from the SimpleQuadrature. ipynd notebook.



	Exercises 3
	1) Analyzing the composite Simpson's rule
	2) Gaussian Quadrature


