1 Numerical integration: Part IV

1.1 Newton-Cotes and Gauß quadrature formulas

Anne Kværnø, André Massing

Date: Feb 1, 2021

If you want to have a nicer theme for your jupyter notebook, download the cascade stylesheet file tma4125.css and execute the next cell:

```python
from IPython.core.display import HTML
def css_styling():
    try:
        with open("tma4125.css", "r") as f:
            styles = f.read()
            return HTML(styles)
    except FileNotFoundError:
        pass  # Do nothing

# Comment out next line and execute this cell to restore the default notebook

# style
css_styling()
```

2 Newton-Cotes formulas

We have already seen that given \(n + 1 \) distinct but otherwise arbitrary quadrature nodes \(\{x_i\}_{i=0}^n \subset [a, b] \), we can construct a quadrature rule \(Q[·]|\{x_i\}_{i=0}^{n+1}, \{w_i\}_{i=0}^{n+1} \) based on polynomial interpolation which has degree of exactness equals to \(n \).

An classical example was the trapezoidal rule, which are based on the two quadrature points \(x_0 = a \) and \(x_1 = b \) and which has degree of exactness equal to 1.

The trapezoidal is the simplest example of a quadrature formula which belongs to the so-called Newton Cotes formulas.

By definition, **Newton-Cotes formulas** are quadrature rules which are based on **equidistributed nodes** \(\{x_i\}_{i=0}^n \subset [a, b] \) and have degree of exactness equals to \(n \).
The simplest choices here — the closed Newton-Cotes methods — use the nodes \(x_i = a + ih \) with \(h = (b - a) / n \). Examples of these are the Trapezoidal rule and Simpson’s rule. The main appeal of these rules is the simple definition of the nodes.

If \(n \) is odd, the Newton-Cotes method with \(n + 1 \) nodes has degree of precision \(n \); if \(n \) is even, it has degree of precision \(n + 1 \). The corresponding convergence order for the composite rule is, as for all such rules, one larger than the degree of precision, provided that the function \(f \) is sufficiently smooth.

However, for \(n \geq 8 \) negative weights begin to appear in the definitions. Note that for a positive function \(f(x) \geq 0 \) we have that the integral \(I[f](a,b) \geq 0 \) But for a quadrature rule with negative weights we have not necessarily that \(Q[f](a,b) \geq 0 \)! This has the undesired effect that the numerical integral of a positive function can be negative.

In addition, this can lead to cancellation errors in the numerical evaluation, which may result in a lower practical accuracy. Since the rules with \(n = 6 \) and \(n = 7 \) yield the same convergence order, this means that it is mostly the rules with \(n \leq 6 \) that are used in practice.

The open Newton-Cotes methods, in contrast, use the nodes \(x_i = a + (i + 1/2)h \) with \(h = (b - a) / (n + 1) \). The simplest example here is the midpoint rule. Here negative weights appear already for \(n \geq 2 \). Thus the midpoint rule is the only such rule that is commonly used in applications.

3 Gauß quadrature

Last lecture, when comparing the trapezoidal rule with Gauß-Legendre quadrature rule, both based on two quadrature nodes, we observed that * the Gauß-Legendre quadrature was much more accurate than the trapezoidal rule,

- the Gauß-Legendre quadrature has degree of exactness equal to 3 and not only 1.

So obviously the position of the nodes matters!

Questions: *Is there a general approach to construct quadrature rules \(Q[\cdot](\{x_i\}_{i=0}^n, \{w_i\}_{i=0}^n) \) based on \(n + 1 \) nodes with a degree of exactness \(> n \)?

- What is the maximal degree of exactness we can achieve?

Intuition: If we don’t predefine the quadrature nodes, we have \(2n + 2 \) parameters (\(n + 1 \) nodes and \(n + 1 \) weights) in total.

With \(2n + 2 \) parameters, we might hope that we can construct quadrature rules which are exact for \(p \in \mathbb{P}_{2n+1} \).

3.1 Definition 1: Gaussian quadrature

A quadrature rule \(Q[\cdot](\{x_i\}_{i=0}^n, \{w_i\}_{i=0}^n) \) based on \(n + 1 \) nodes which has degree of exactness equals to \(2n + 1 \) is called a **Gaussian (Legendre) quadrature** (GQ).

3.2 Orthogonal polynomials

To construct Gaussian quadrature rule, we need to briefly review the concept of orthogonality, which we introduced when we learned about Fourier series.
Two functions \(f, g : [a, b] \rightarrow \mathbb{R} \) are orthogonal if
\[
\langle f, g \rangle := \int_a^b f(x)g(x) \, dx = 0.
\]
Usually, it will be clear from the context which interval \([a, b]\) we picked.

3.3 Theorem 1: Orthogonal polynomials on \([a, b]\)

There is a sequence of \(\{p_k\}_{k=1}^{\infty} \) of polynomials satisfying
\[
p_0(x) = 1, \tag{1}
\]
\[
p_k(x) = x^k + r_{k-1}(x) \quad \text{for } k = 1, 2, \ldots \tag{2}
\]
with \(r_{k-1} \in \mathbb{P}_{k-1} \) and …
satisfying the orthogonality property
\[
\langle p_k, p_l \rangle = \int_a^b p_k(x)p_l(x) \, dx = 0 \quad \text{for } k \neq l, \tag{3}
\]
and that every polynomial \(q_n \in \mathbb{P}_n \) can be written as a linear combination of those orthogonal polynomials up to order \(n \). In other words
\[
\mathbb{P}_n = \text{Span}\{p_0, \ldots, p_n\}
\]

Proof. We start from the sequence \(\{\phi_k\}_{k=0}^{\infty} \) of monomials \(\phi_k(x) = x^k \) and apply the Gram-Schmidt orthogonalization procedure:
\[
\begin{align*}
\tilde{p}_0 &:= 1 = \phi_0 \\
\tilde{p}_1 &:= \phi_1 - \frac{\langle \phi_1, \tilde{p}_0 \rangle}{\lVert \tilde{p}_0 \rVert^2} \tilde{p}_0 \\
\tilde{p}_2 &:= \phi_2 - \frac{\langle \phi_2, \tilde{p}_0 \rangle}{\lVert \tilde{p}_0 \rVert^2} \tilde{p}_0 - \frac{\langle \phi_2, \tilde{p}_1 \rangle}{\lVert \tilde{p}_1 \rVert^2} \tilde{p}_1 \\
\vdots \\
\tilde{p}_k &:= \phi_k - \sum_{j=0}^{k-1} \frac{\langle \phi_k, \tilde{p}_j \rangle}{\lVert \tilde{p}_j \rVert^2} \tilde{p}_j
\end{align*}
\]

By construction, \(\tilde{p}_n \in \mathbb{P}_n \) and \(\langle p_k, p_l \rangle = 0 \) for \(k \neq l \). Since \(\tilde{p}_k(x) = a_kx^k + a_{k-1}x^{k-1} + \ldots a_0 \), we simply define \(p_k(x) = \tilde{p}_k/a_k \) to satisfy (2).
3.4 Theorem 2: Roots of orthogonal polynomials
Each of the polynomials p_n defined in Theorem 1: Orthogonal polynomials on $[a,b]$ has n distinct real roots.

Proof. Without proof, will be added later for the curious among you.

3.5 Theorem 3: Construction of Gaussian quadrature
Let $p_{n+1} \in \mathbb{P}_{n+1}$ be a polynomial on $[a,b]$ satisfying

$$\langle p_{n+1}, q \rangle = 0 \quad \forall \ q \in \mathbb{P}_n.$$

Set $\{x_i\}_{i=0}^n$ to be the $n+1$ real roots of p_{n+1} and define the weights $\{w_i\}_{i=0}^n$ by

$$w_i = \int_a^b \ell_i(x) \, dx.$$

where $\{\ell_i\}_{i=0}^n$ are the $n+1$ cardinal functions associated with $\{x_i\}_{i=0}^n$. The resulting quadrature rule is a Gaussian quadrature.

Proof. Without proof, will be added later for the curious among you.

Recipe 1 to construct a Gaussian quadrature.

To construct a Gaussian formula on $[a,b]$ based on $n+1$ nodes you proceed as follows

1. Construct a polynomial $p_{n+1} \in \mathbb{P}_{n+1}$ on the interval $[a,b]$ which satisfies

$$\int_a^b p_{n+1}(x)q(x) \, dx \quad \forall \ q \in \mathbb{P}_n.$$

You can start from the monomials $\{1, x, x^2, \ldots, x^{n+1}\}$ and use Gram-Schmidt to orthogonalize them.

2. Determine the $n+1$ real roots $\{x_i\}_{i=0}^n$ of p_{n+1} which serve then as quadrature nodes.

3. Calculate the cardinal functions $\ell_i(x)$ associated with $n+1$ nodes $\{x_i\}_{i=0}^n$ and then the weights are given by $w_i = \int_a^b \ell_i(x) \, dx$.

This is the recipe you are asked to use in Exercise set 3. Alternatively one can start from a reference interval, leading to

Recipe 2 to construct a Gaussian quadrature.

To construct a Gaussian formula on $[a,b]$ based on $n+1$ nodes you proceed as follows

1. Construct a polynomial $p_{n+1} \in \mathbb{P}_{n+1}$ on the reference interval $[-1,1]$ which satisfies

$$\int_{-1}^1 p_{n+1}(x)q(x) \, dx \quad \forall \ q \in \mathbb{P}_n.$$

2. You determine the $n+1$ real roots $\{\hat{x}_i\}_{i=0}^n$ of p_{n+1} which serve then as quadrature nodes.
3. Calculate the cardinal functions $\ell_i(x)$ associated with $n + 1$ nodes $\{\hat{x}_i\}_{i=0}^n$ and then the weights are given by $\hat{w}_i = \int_{-1}^{1} \ell_i(x) \, dx$.

4. Finally, transform the resulting Gauß quadrature formula to the desired interval $[a, b]$ via

$$x_i = \frac{b - a}{2} \hat{x}_i + \frac{b + a}{2}, \quad w_i = \frac{b - a}{2} \hat{w}_i \quad \text{for } i = 0, \ldots, n.$$

3.6 Example: Revisiting Gauß-Legendre quadrature with 2 nodes

We will now derive the Gauß-Legendre quadrature with 2 nodes we encountered in the previous lectures.

Today we will use the sympy quite a bit, and start with the snippets

```python
3: from sympy.abc import x  # Denote our integration variable x
from sympy import integrate

Spend a minute and have look at integrate submodule.
First we construct the first 3 orthogonal polynomials (order 0, 1, 2) on $[0, 1]$. Spend 2 minutes to understand the code below:

9: # Interval
a, b = 0, 1

# Define scalar product
def scp(p, q):
    return integrate(p*q, (x, a, b))

# Define monomials up to order 2
mono = lambda x, m: x**m
def mono(x, m):
    return x**m

phis = [mono(x, m) for m in range(3)]
print(phis)
[1, x, x**2]

Construct orthogonal polynomials (not normalized)

[]: # Insert code here

10: ps = []
# Use Gram-Schmidt
for phi in phis:
    ps.append(phi)
for p in ps[:-1]:
\[
ps[-1] = ps[-1] - \frac{scp(p, ps[-1])}{scp(p, p)}p
\]

```
print("ps")
print(ps)
```

```python
ps
[1, x - 1/2, x**2 - x + 1/6]
```

Now write a code snippet to check whether they are actually orthogonal

```
Insert code here
```

```
[17]: for p in ps:
 for q in ps:
 int_p_q = scp(p,q)
 print("int_p_q = {}".format(int_p_q))
```

```
int_p_q = 1
int_p_q = 0
int_p_q = 0
int_p_q = 0
int_p_q = 1/12
int_p_q = 0
int_p_q = 0
int_p_q = 0
int_p_q = 1/180
```

Compute the roots of the second order polynomial. Of course you can do it by hand but let’s us sympy for it. Spend a minute a have a look at solve submodule.

```
from sympy.solvers import solve
Insert code here
```

```
[18]: from sympy.solvers import solve
```

```
[13]: print(ps[-1])
xqs = solve(ps[-1])
print(xqs)
```

```
x**2 - x + 1/6
[1/2 - sqrt(3)/6, sqrt(3)/6 + 1/2]
```

Next constructe the cardinal functions \( \ell_0 \) and \( \ell_1 \) associated with the 2 roots.

```
[14]: # Non-normalized version
 L_01 = (x-xqs[1])
 print(L_01)
 print(L_01.subs(x, xqs[1]))
 print(L_01.subs(x, xqs[0]))
```

```
Normalize
```

6
L_01 /= L_01.subs(x, xqs[0])
print(L_01.subs(x, xqs[0]))

x - 1/2 - sqrt(3)/6
0
-sqrt(3)/3
1

# Non-normalized version
L_11 = (x-xqs[0])
# Normalize
L_11 /= L_11.subs(x, xqs[1])

Ls = [L_01, L_11]
print(Ls)

[-sqrt(3)*(x - 1/2 - sqrt(3)/6), sqrt(3)*(x - 1/2 + sqrt(3)/6)]

Finally, compute the weights.

# Insert code here

ws = [integrate(L, (x, a, b)) for L in Ls ]
print(ws)

[1/2, 1/2]

3.7 Exercise: Now construct a Gaussian quadrature for n=3 or n=4 points.