
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Polynomial interpolation: Lagrange interpolation

Anne Kværnø (modified by André Massing)

Jan 14, 2021

The Python codes for this note are given in polynomialinterpolation.py.

1 Introduction
Polynomials can be used to approximate functions over some bounded interval x ∈ [a, b]. Such polynomials
can be used for different purposes. The function itself may be unknown, and only measured data are
available. In this case, a polynomial may be used to find approximations to intermediate values of the
function. Polynomials are easy to integrate, and can be used to find approximations of integrals of
more complicated functions. This will be exploited later in the course. And there are plenty of other
applications.

In this part of the course, we will only discuss interpolation polynomials.

Interpolation problem.

Given n + 1 points (xi, yi)n
i=0. Find a polynomial p(x) of lowest possible degree satisfying the

interpolation condition

p(xi) = yi, i = 0, . . . , n. (1)

The solution p(x) is called the interpolation polynomial, the xi values are called nodes, and the points
(xi, yi) interpolation points.

Example 1: Given the points
xi 0 2/3 1
yi 1 1/2 0

.

The corresponding interpolation polynomial is

p2(x) = (−3x2 − x+ 4)/4

The y-values of this example are chosen such that yi = cos (πxi/2). So p2(x) can be considered as an
approximation to cos (πx/2) on the interval [0, 1].

Interpolation data
xdata = [0,2/3., 1]
ydata = [1, 1/2., 0]
Interpolation polynomial
p2 = lambda x : (-3*x**2 -x + 4)/4.

Grid points for plotting
x = np.linspace(0,1,100)
y = p2(x)

Original function
f = np.cos(pi*x/2)

plt.plot(x,f, ’c’,x,y,’m’, xdata, ydata, "ok")
plt.legend([’$\cos(\pi x/2)$’, ’p_2(x)’, ’Interpolation data’])

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 cos(x/2)
p_2(x)
Interpolation data

Figure 1: Interpolation data and polynomial on [0, 1] .

Content of this note. In this part, we will discuss the following:

• Method: How to compute the polynomials?

• Existence and uniqueness results.

• Error analysis: If the polynomial is used to approximate a function, how good is the approximation?

• Improvements: If the nodes xi can be chosen freely, how should we do it in order to reduce the
error?

1.1 Preliminaries
Let us start with some useful notation and facts about polynomials.

• A polynomial of degree n is given by

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x1 + c0, ci ∈ R, i = 0, 1, . . . , n. (2)
• Pn is the set of all polynomials of degree n.

• Cm[a, b] is the set of all continuous functions that have

• continuous first m derivatives. The value r is a root or a zero

• of a polynomial p if p(r) = 0. A nonzero polynomial of degree n

• can never have more than n real roots (there may be less). A

• polynomial of degree n with n real roots r1, r2, . . . , rn

• can be written as

pn(x) = c(x− r1)(x− r2) · · · (x− rn) = c

n∏
i=1

(x− ri).

2 Methods
In this section, we present three techniques for finding the interpolation polynomial for a given set of
data.

2

2.1 The direct approach
For a polynomial of degree n the interpolation condition (1) is a linear systems of n+ 1 equations in n+ 1
unknowns:

n∑
i=0

xi
jci = yj , j = 0, . . . , n.

If we are basically interested in the polynomials themself, given by the coefficients ci, i = 0, 1, . . . , n, this is
a perfectly fine solution. It is for instance the strategy implemented in MATLAB’s interpolation routines.
However, in this course, polynomial interpolation will be used as a basic tool to construct other algorithms,
in particular for integration. In that case, this is not the most convenient option, so we concentrate on a
different strategy, which essentially makes it possible to just write up the polynomials.

2.2 Lagrange interpolation
Given n+ 1 points (xi, yi)n

i=0 with distinct xi values. The cardinal functions are defined by:

`i(x) =
n∏

j=0,j 6=i

x− xj

xi − xj
= x− x0

xi − x0
· · · x− xi−1

xi − xi−1
· x− xi+1

xi − xi+1
· · · x− xn

xi − xn
, i = 0, . . . , n.

The cardinal functions have the following properties:

• `i ∈ Pn, i = 0, 1, . . . , n.

• `i(xj) = δij =
{

1, when i = j

0, when i 6= j
.

• They are constructed solely from the nodes xi’s.

• They are linearly independent, and thus form a basis for Pn.

Remark. The cardinal functions are also often called Lagrange polynomials.

The interpolation polynomial is now given by

pn(x) =
n∑

i=0
yi`i(x)

since
pn(xj) =

n∑
i=0

yi`i(xj) = yj , j = 0, . . . , n.

Example 2: Given the points:
xi 0 1 3
yi 3 8 6

.

The corresponding cardinal functions are given by:

`0(x) = (x− 1)(x− 3)
(0− 1)(0− 3) = 1

3x
2 − 4

3x+ 1

`1(x) = (x− 0)(x− 3)
(1− 0)(1− 3) = −1

2x
2 + 3

2x

`2(x) = (x− 0)(x− 1)
(3− 0)(3− 1) = 1

6x
2 − 1

6x

and the interpolation polynomial is given by (check it yourself):

p2(x) = 3`0(x) + 8`1(x) + 6`2(x) = −2x2 + 7x+ 3.

3

2.3 Implementation
The method above is implemented as two functions:

• cardinal(xdata, x): Create a list of cardinal functions `i(x) evaluated in x.

• lagrange(ydata, l): Create the interpolation polynomial pn(x).

Here, xdata and ydata are arrays with the interpolation points, and x is an array of values in which the
polynomials are evaluated.

You are not required to understand the implementation of these functions, but you should understand
how to use them.

def cardinal(xdata, x):
"""
cardinal(xdata, x):
In: xdata, array with the nodes x_i.

x, array or a scalar of values in which the cardinal functions are evaluated.
Return: l: a list of arrays of the cardinal functions evaluated in x.
"""
n = len(xdata) # Number of evaluation points x
l = []
for i in range(n): # Loop over the cardinal functions

li = np.ones(len(x))
for j in range(n): # Loop to make the product for l_i

if i is not j:
li = li*(x-xdata[j])/(xdata[i]-xdata[j])

l.append(li) # Append the array to the list
return l

def lagrange(ydata, l):
"""
lagrange(ydata, l):
In: ydata, array of the y-values of the interpolation points.

l, a list of the cardinal functions, given by cardinal(xdata, x)
Return: An array with the interpolation polynomial.
"""
poly = 0
for i in range(len(ydata)):

poly = poly + ydata[i]*l[i]
return poly

Example 3: Test the functions on the interpolation points of Example 2.

Example 3
xdata = [0, 1, 3] # The interpolation points
ydata = [3, 8, 6]
x = np.linspace(0, 3, 101) # The x-values in which the polynomial is evaluated
l = cardinal(xdata, x) # Find the cardinal functions evaluated in x
p = lagrange(ydata, l) # Compute the polynomial evaluated in x
plt.plot(x, p) # Plot the polynomial
plt.plot(xdata, ydata, ’o’) # Plot the interpolation points
plt.title(’The interpolation polynomial p(x)’)
plt.xlabel(’x’);

Numerical exercises:

1. Plot the cardinal functions for the nodes of Example 1.

2. Plot the interpolation polynomials for some points of your own choice.

4

2.4 Existence and uniqueness of interpolation polynomials.
We have already proved the existence of such polynomials, simply by constructing them. But are they
unique? The answer is yes!

Theorem: Existence and uniqueness.

Given n+ 1 points (xi, yi)n
i=0 with distinct x values. Then there is one and only one polynomial

pn(x) ∈ Pn satisfying the interpolation condition

pn(xi) = yi, i = 0, . . . , n.

Proof. Suppose there exist two different interpolation polynomials pn and qn of degree n interpolating
the same n+ 1 points. The polynomial r(x) = pn(x)− qn(x) is of degree n with zeros in all the nodes xi,
that is a total of n+ 1 zeros. But then r ≡ 0, and the two polynomials pn and qn are identical.

5

	Introduction
	Preliminaries

	Methods
	The direct approach
	Lagrange interpolation
	Implementation
	Existence and uniqueness of interpolation polynomials.

