
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Numerical solution of ordinary differential equations:
High order Runge-Kutta methods

André Massing

Mar 23, 2021

The Python codes for this note are given in ode.py.

1 Runge-Kutta Methods
In the previous lectures we introduced Euler’s method and Heun’s method as particular instances of the
One Step Methods, and we presented the general error theory for one step method.

In this Lecture, we introduce a large family of the one step methods which go under the nameRunge-Kutta
methods (RKM). We will see that Euler’s method and Heun’s method are instance of RKMs.

1.1 Derivation of Runge-Kutta Methods
For a given time interval Ii = [ti, ti+1] we want to compute yi+1 assuming that yi is given. Starting from
the exact expression

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t)) dt,

the idea is now to approximate the integral by some quadrature rule Q[·]({ξj}sj=1, {bj}sj=1) defined on Ii.
Then we get

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t)) dt (1)

≈ τ
s∑
j=0

bjf(ξj , y(ξj)) (2)

Now we can define {cj}sj=1 such that ξj = ti + cjτ for j = 1, . . . , s

Exercise 1: A first condition on bj

Question: What value do you expect for
∑s
j=1 bj?

A.
∑s
j=1 bj = τ

B.
∑s
j=1 bj = 0

C.
∑s
j=1 bj = 1

Answer: C.

Solution: A: Wrong. B: Wrong. C: Right.

In contrast to pure numerical integration, we don’t know the values of y(ξj). Again, we could use the
same idea to approximate

y(ξj)− y(ti) =
∫ ti+cjτ

ti

f(t, y(t)) dt

but then again we get a closure problem if we choose new quadrature points. The idea is now to not
introduce even more new quadrature points but to use same y(ξj) to avoid the closure problem. Note that
this leads to an approximation of the integrals

∫ ti+cjτ

ti
with possible nodes outside of [ti, ti + cjτ].

This leads us to

y(ξj)− y(ti) =
∫ ti+cjτ

ti

f(t, y(t)) dt (3)

≈ cjτ
s∑
l=1

ãjlf(ξl, y(ξl)) (4)

= τ

s∑
l=1

ajlf(ξl, y(ξl)) (5)

where we set cj ãjl = ajl.

Exercise 2: A first condition on ajl

Question: What value do you expect for
∑s
l=1 ajl?

A.
∑s
l=1 ajl = 1

cj

B.
∑s
l=1 ajl = cj

C.
∑s
l=1 ajl = 1

D.
∑s
l=1 ajl = τ

Answer: B.

Solution: A: Wrong. B: Right. C: Wrong. D: Wrong.

Definition 1.1. Runge-Kutta methods.

Given bj , cj , and ajl for j, l = 1, . . . s, the Runge-Kutta method is defined by the recipe

Yj = yi + τ

s∑
l=1

ajlf(ti + clτ, Yl) for j = 1, . . . s, (6)

yi+1 = yi + τ

s∑
j=1

bjf(ti + cjτ, Yj) (7)

2

Runge-Kutta schemes are often specified in the form of a Butcher table:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

(8)

If aij = 0 for j > i the Runge-Kutta method is called explicit. (Why?)

Note that in the final step, all the function evaluation we need to perform have already been performed
when computing Yj .

Therefore one often rewrite the scheme by introducing stage derivatives

kl = f(ti + clτ, Yl) (9)

= f(ti + clτ, yi + τ

s∑
j=1

aljkj) j = 1, . . . s, (10)

so the resulting scheme will be (swapping index l and j)

kj = f(ti + cjτ, yi + τ

s∑
l=1

ajlkl) j = 1, . . . s, (11)

yi+1 = yi + τ

s∑
j=1

bjkj (12)

Exercise 3: Butcher table for the explicit Euler
Write down the Butcher table for the explicit Euler.

Solution. Define k1 = f(ti, yi) = f(ti+0 ·τ, yi+τ ·0 ·k1). Then the explicit Euler step yi+1 = yi+τk1 =
yi + τ · 1 · k1, and thus the Butcher table is given by

0 0
1
.

Exercise 4: The improved explicit Euler method
We formally derive the explicit midpoint rule or improved explicit Euler method. Applying the
midpoint rule to our integral representatio yields

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t)) dt (13)

≈ τf(ti + 1
2τ, y(ti + 1

2τ)) (14)

Since we cannot determine the value y(ti + 1
2τ) from this system, we approximate it using a half Euler

step
y(ti + 1

2τ) ≈ yti + 1
2τf(ti, y(ti))

leading to the scheme

yi+1/2 := yi + 1
2τf(ti, yi) (15)

yi+1 := yi + τf(ti + 1
2τ, yi+1/2) (16)

a) Is this a one-step function? Can you define the increment function Φ?

3

Solution. Yes it is, and it’s increment function is given by

Φ(ti, yi, yi+1, τ) = f(ti + 1
2τ, yi + 1

2τf(ti, yi))

b) Can you rewrite this as a Runge-Kutta method? If so, determine the Butcher table of it.

Solution. Define k1 and k2 as follows,

yi+1/2 := yi + 1
2τ f(ti, yi)︸ ︷︷ ︸

=:k1

(17)

yi+1 := yi + τf(ti + 1
2τ, yi+1/2) = yi + τ f(ti + 1

2τ, yi + τ 1
2k1)︸ ︷︷ ︸

:=k2

. (18)

Then

yi+1 = yi + τk2 (19)

and thus the Butcher table is given by
0 0 0
1
2

1
2 0
0 1

1.2 Implementation of explicit Runge-Kutta methods
Below you will find the implementation a general solver class ExplicitRungeKutta which at its initializa-
tion takes in a Butcher table and has __call__ function

def __call__(self, y0, f, t0, T, n):

and can be used like this

Define Butcher table
a = np.array([[0, 0, 0],

[1.0/3.0, 0, 0],
[0, 2.0/3.0, 0]])

b = np.array([1.0/4.0, 0, 3.0/4.0])

c = np.array([0,
1.0/3.0,
2.0/3.0])

Define number of time steps
n = 10

Create solver
rk3 = ExplicitRungeKutta(a, b, c)

Solve problem (applies __call__ function)
ts, ys = rk3(y0, t0, T, f, Nmax)

The complete implementation is given here:

class ExplicitRungeKutta:
def __init__(self, a, b, c):

self.a = a
self.b = b
self.c = c

def __call__(self, y0, t0, T, f, Nmax):
Extract Butcher table

4

a, b, c = self.a, self.b, self.c

Stages
s = len(b)
ks = [np.zeros_like(y0, dtype=np.double) for s in range(s)]

Start time-stepping
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax

while(ts[-1] < T):
t, y = ts[-1], ys[-1]

Compute stages derivatives k_j
for j in range(s):

t_j = t + c[j]*dt
dY_j = np.zeros_like(y, dtype=np.double)
for l in range(j):

dY_j += dt*a[j,l]*ks[l]

ks[j] = f(t_j, y + dY_j)

Compute next time-step
dy = np.zeros_like(y, dtype=np.double)
for j in range(s):

dy += dt*b[j]*ks[j]

ys.append(y + dy)
ts.append(t + dt)

return (np.array(ts), np.array(ys))

Example 1.1. Implementation and testing of the improved Euler method.

We implement the improved explicit Euler from above and plot the analytical and the numerical
solution. Finally, we determine the convergence order.

Define Butcher table for improved Euler
a = np.array([[0, 0],

[0.5, 0]])
b = np.array([0, 1])
c = np.array([0, 0.5])

Create a new Runge Kutta solver
rk2 = Explicit_Runge_Kutta(a, b, c)

t0, T = 0, 1
y0 = 1
lam = 1
Nmax = 10

rhs of IVP
f = lambda t,y: lam*y

the solver can be simply called as before, namely as function:
ts, ys = rk2(y0, t0, T, f, Nmax)

plt.figure()
plt.plot(ts, ys, "c--o", label="y_{heun}")

Exact solution to compare against
y_ex = lambda t: y0*np.exp(lam*(t-t0))

5

Plot the exact solution (will appear in the plot above)
plt.plot(ts, y_ex(ts), "m-", label="y_{ex}")
plt.legend()

Run an EOC test
Nmax_list = [4, 8, 16, 32, 64, 128]

errs, eocs = compute_eoc(y0, t0, T, f, Nmax_list, rk2, y_ex)
print(errs)
print(eocs)

Do a pretty print of the tables using panda

import pandas as pd
from IPython.display import display

table = pd.DataFrame({’Error’: errs, ’EOC’ : eocs})
display(table)

1.3 Order conditions for Runge-Kutta Methods
The convergence theorem for one-step methods gave us some necessary conditions to guarantee that a
method is convergent order of p:

“consistency order p” + “Increment function satisfies a Lipschitz condition” ⇒ “convergence order p.

“local truncation error behaves like O(τp+1)” + “Increment function satisfies a Lipschitz condition”
⇒ “global truncation error behaves like O(τp)”

It turns out that for f is at least C1 with respect to all its arguments then the increment function Φ
associated with any Runge-Kutta methods satisfies a Lipschitz condition. Thus the next theorem

Theorem 1.1. Order conditions for Runge-Kutta methods.

A Runge–Kutta method has consistency order p if and only if all the conditions up to and including
p in the table below are satisfied.

p conditions
1

∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6
4

∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12∑

biaijajkck = 1/24

where sums are taken over all the indices from 1 to s.

Proof. Without proof.

Example 1.2. Applying order conditions to Heun’s method.

6

Apply the conditions to Heun’s method, for which s = 2 and the Butcher tableau is

c1 a11 a12

c2 a21 a22

b1 b2

=
0 0 0
1 1 0

1
2

1
2

.

The order conditions are:

p = 1 b1 + b2 = 1
2 + 1

2 = 1 OK

p = 2 b1c1 + b2c2 = 1
2 · 0 + 1

2 · 1 = 1
2 OK

p = 3 b1c
2
1 + b2c

2
2 = 1

2 · 0
2 + 1

2 · 1
2 = 1

2 6=
1
3 Not satisfied

b1(a11c1 + a12c2) + b2(a21c1 + a22c2) = 1
2(0 · 0 + 0 · 1) + 1

2(1 · 0 + 0 · 1)

= 0 6= 1
6 Not satisfied

The method is of order 2.

Theorem 1.2. Convergence theorem for Runge-Kutta methods.

Given the IVP y′ = f(t,y),y(0) = y0. Assume f ∈ C1 and that a given Runge-Kutta method
satisfies the order conditions from Theorem 1.1 up to order p. Then the Runge-Kutta method is
convergent of order p.

Proof. Without proof.

7

	Runge-Kutta Methods
	Derivation of Runge-Kutta Methods
	Implementation of explicit Runge-Kutta methods
	Order conditions for Runge-Kutta Methods

