Numerical solution of ordinary differential equations: High order Runge-Kutta methods

André Massing

Mar 23, 2021

The Python codes for this note are given in ode.py.

1 Runge-Kutta Methods

In the previous lectures we introduced Euler's method and Heun's method as particular instances of the One Step Methods, and we presented the general error theory for one step method.
In this Lecture, we introduce a large family of the one step methods which go under the name Runge-Kutta methods (RKM). We will see that Euler's method and Heun's method are instance of RKMs.

1.1 Derivation of Runge-Kutta Methods

For a given time interval $I_{i}=\left[t_{i}, t_{i+1}\right]$ we want to compute y_{i+1} assuming that y_{i} is given. Starting from the exact expression

$$
y\left(t_{i+1}\right)-y\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} f(t, y(t)) \mathrm{d} t
$$

the idea is now to approximate the integral by some quadrature rule $\mathrm{Q}[\cdot]\left(\left\{\xi_{j}\right\}_{j=1}^{s},\left\{b_{j}\right\}_{j=1}^{s}\right)$ defined on I_{i}. Then we get

$$
\begin{align*}
y\left(t_{i+1}\right)-y\left(t_{i}\right) & =\int_{t_{i}}^{t_{i+1}} f(t, y(t)) \mathrm{d} t \tag{1}\\
& \approx \tau \sum_{j=0}^{s} b_{j} f\left(\xi_{j}, y\left(\xi_{j}\right)\right) \tag{2}
\end{align*}
$$

Now we can define $\left\{c_{j}\right\}_{j=1}^{s}$ such that $\xi_{j}=t_{i}+c_{j} \tau$ for $j=1, \ldots, s$

Exercise 1: A first condition on b_{j}

Question: What value do you expect for $\sum_{j=1}^{s} b_{j}$?
A. $\sum_{j=1}^{s} b_{j}=\tau$
B. $\sum_{j=1}^{s} b_{j}=0$
C. $\sum_{j=1}^{s} b_{j}=1$

Answer: C.

Solution: A: Wrong. B: Wrong. C: Right.

In contrast to pure numerical integration, we don't know the values of $y\left(\xi_{j}\right)$. Again, we could use the same idea to approximate

$$
y\left(\xi_{j}\right)-y\left(t_{i}\right)=\int_{t_{i}}^{t_{i}+c_{j} \tau} f(t, y(t)) \mathrm{d} t
$$

but then again we get a closure problem if we choose new quadrature points. The idea is now to not introduce even more new quadrature points but to use same $y\left(\xi_{j}\right)$ to avoid the closure problem. Note that this leads to an approximation of the integrals $\int_{t_{i}}^{t_{i}+c_{j} \tau}$ with possible nodes outside of $\left[t_{i}, t_{i}+c_{j} \tau\right]$.
This leads us to

$$
\begin{align*}
y\left(\xi_{j}\right)-y\left(t_{i}\right) & =\int_{t_{i}}^{t_{i}+c_{j} \tau} f(t, y(t)) \mathrm{d} t \tag{3}\\
& \approx c_{j} \tau \sum_{l=1}^{s} \tilde{a}_{j l} f\left(\xi_{l}, y\left(\xi_{l}\right)\right) \tag{4}\\
& =\tau \sum_{l=1}^{s} a_{j l} f\left(\xi_{l}, y\left(\xi_{l}\right)\right) \tag{5}
\end{align*}
$$

where we set $c_{j} \tilde{a}_{j l}=a_{j l}$.

Exercise 2: A first condition on $a_{j l}$

Question: What value do you expect for $\sum_{l=1}^{s} a_{j l}$?
A. $\sum_{l=1}^{s} a_{j l}=\frac{1}{c_{j}}$
B. $\sum_{l=1}^{s} a_{j l}=c_{j}$
C. $\sum_{l=1}^{s} a_{j l}=1$
D. $\sum_{l=1}^{s} a_{j l}=\tau$

Answer: B.
Solution: A: Wrong. B: Right. C: Wrong. D: Wrong.

Definition 1.1. Runge-Kutta methods.
Given b_{j}, c_{j}, and $a_{j l}$ for $j, l=1, \ldots s$, the Runge-Kutta method is defined by the recipe

$$
\begin{align*}
Y_{j} & =y_{i}+\tau \sum_{l=1}^{s} a_{j l} f\left(t_{i}+c_{l} \tau, Y_{l}\right) \quad \text { for } j=1, \ldots s, \tag{6}\\
y_{i+1} & =y_{i}+\tau \sum_{j=1}^{s} b_{j} f\left(t_{i}+c_{j} \tau, Y_{j}\right) \tag{7}
\end{align*}
$$

Runge-Kutta schemes are often specified in the form of a Butcher table:

$$
\begin{array}{c|ccc}
c_{1} & a_{11} & \cdots & a_{1 s} \tag{8}\\
\vdots & \vdots & & \vdots \\
c_{s} & a_{s 1} & \cdots & a_{s s} \\
\hline & b_{1} & \cdots & b_{s}
\end{array}
$$

If $a_{i j}=0$ for $j \geqslant i$ the Runge-Kutta method is called explicit. (Why?)
Note that in the final step, all the function evaluation we need to perform have already been performed when computing Y_{j}.
Therefore one often rewrite the scheme by introducing stage derivatives

$$
\begin{align*}
k_{l} & =f\left(t_{i}+c_{l} \tau, Y_{l}\right) \tag{9}\\
& =f\left(t_{i}+c_{l} \tau, y_{i}+\tau \sum_{j=1}^{s} a_{l j} k_{j}\right) \quad j=1, \ldots s, \tag{10}
\end{align*}
$$

so the resulting scheme will be (swapping index l and j)

$$
\begin{align*}
k_{j} & =f\left(t_{i}+c_{j} \tau, y_{i}+\tau \sum_{l=1}^{s} a_{j l} k_{l}\right) \quad j=1, \ldots s, \tag{11}\\
y_{i+1} & =y_{i}+\tau \sum_{j=1}^{s} b_{j} k_{j} \tag{12}
\end{align*}
$$

Exercise 3: Butcher table for the explicit Euler

Write down the Butcher table for the explicit Euler.

Solution. Define $k_{1}=f\left(t_{i}, y_{i}\right)=f\left(t_{i}+0 \cdot \tau, y_{i}+\tau \cdot 0 \cdot k_{1}\right)$. Then the explicit Euler step $y_{i+1}=y_{i}+\tau k_{1}=$ $y_{i}+\tau \cdot 1 \cdot k_{1}$, and thus the Butcher table is given by

$$
\begin{array}{l|l}
0 & 0 \\
\hline & 1
\end{array} .
$$

Exercise 4: The improved explicit Euler method

We formally derive the explicit midpoint rule or improved explicit Euler method. Applying the midpoint rule to our integral representatio yields

$$
\begin{align*}
y\left(t_{i+1}\right)-y\left(t_{i}\right) & =\int_{t_{i}}^{t_{i+1}} f(t, y(t)) \mathrm{d} t \tag{13}\\
& \approx \tau f\left(t_{i}+\frac{1}{2} \tau, y\left(t_{i}+\frac{1}{2} \tau\right)\right) \tag{14}
\end{align*}
$$

Since we cannot determine the value $y\left(t_{i}+\frac{1}{2} \tau\right)$ from this system, we approximate it using a half Euler step

$$
y\left(t_{i}+\frac{1}{2} \tau\right) \approx y_{t_{i}}+\frac{1}{2} \tau f\left(t_{i}, y\left(t_{i}\right)\right)
$$

leading to the scheme

$$
\begin{align*}
y_{i+1 / 2} & :=y_{i}+\frac{1}{2} \tau f\left(t_{i}, y_{i}\right) \tag{15}\\
y_{i+1} & :=y_{i}+\tau f\left(t_{i}+\frac{1}{2} \tau, y_{i+1 / 2}\right) \tag{16}
\end{align*}
$$

a) Is this a one-step function? Can you define the increment function Φ ?

Solution. Yes it is, and it's increment function is given by

$$
\Phi\left(t_{i}, y_{i}, y_{i+1}, \tau\right)=f\left(t_{i}+\frac{1}{2} \tau, y_{i}+\frac{1}{2} \tau f\left(t_{i}, y_{i}\right)\right)
$$

b) Can you rewrite this as a Runge-Kutta method? If so, determine the Butcher table of it.

Solution. Define k_{1} and k_{2} as follows,

$$
\begin{align*}
y_{i+1 / 2} & :=y_{i}+\frac{1}{2} \tau \underbrace{f\left(t_{i}, y_{i}\right)}_{=: k_{1}} \tag{17}\\
y_{i+1} & :=y_{i}+\tau f\left(t_{i}+\frac{1}{2} \tau, y_{i+1 / 2}\right)=y_{i}+\tau \underbrace{f\left(t_{i}+\frac{1}{2} \tau, y_{i}+\tau \frac{1}{2} k_{1}\right)}_{:=k_{2}} . \tag{18}
\end{align*}
$$

Then

$$
\begin{equation*}
y_{i+1}=y_{i}+\tau k_{2} \tag{19}
\end{equation*}
$$

and thus the Butcher table is given by

$$
\begin{array}{c|cc}
0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\hline & 0 & 1
\end{array}
$$

1.2 Implementation of explicit Runge-Kutta methods

Below you will find the implementation a general solver class ExplicitRungeKutta which at its initialization takes in a Butcher table and has \qquad call__ function

```
def __call__(self, y0, f, t0, T, n):
```

and can be used like this

```
# Define Butcher table
a = np.array([[0, 0, 0],
    [1.0/3.0, 0, 0],
    [0, 2.0/3.0, 0]])
b = np.array([1.0/4.0, 0, 3.0/4.0])
c = np.array([0,
    1.0/3.0,
    2.0/3.0])
# Define number of time steps
n = 10
# Create solver
rk3 = ExplicitRungeKutta(a, b, c)
# Solve problem (applies __call__ function)
ts, ys = rk3(y0, t0, T, f, Nmax)
```

The complete implementation is given here:

```
class ExplicitRungeKutta:
    def __init__(self, a, b, c):
        self.a = a
        self.b = b
        self.c = c
    def __call__(self, y0, t0, T, f, Nmax):
        # Extract Butcher table
```

```
a, b, c = self.a, self.b, self.c
# Stages
s = len(b)
ks = [np.zeros_like(y0, dtype=np.double) for s in range(s)]
# Start time-stepping
ys = [y0]
ts = [t0]
dt = (T - t0)/Nmax
while(ts[-1] < T):
    t, y = ts[-1], ys[-1]
    # Compute stages derivatives k_j
    for j in range(s):
        t_j = t + c[j]*dt
        dY_j = np.zeros_like(y, dtype=np.double)
        for l in range(j):
            dY_j += dt*a[j,l]*ks[l]
        ks[j] = f(t_j, y + dY_j)
    # Compute next time-step
    dy = np.zeros_like(y, dtype=np.double)
    for j in range(s):
            dy += dt*b[j]*ks[j]
    ys.append(y + dy)
    ts.append(t + dt)
return (np.array(ts), np.array(ys))
```

Example 1.1. Implementation and testing of the improved Euler method.
We implement the improved explicit Euler from above and plot the analytical and the numerical solution. Finally, we determine the convergence order.

```
# Define Butcher table for improved Euler
a = np.array([[0, 0],
    [0.5, 0]])
b = np.array([0, 1])
c = np.array([0, 0.5])
# Create a new Runge Kutta solver
rk2 = Explicit_Runge_Kutta(a, b, c)
t0, T = 0, 1
y0 = 1
lam = 1
Nmax = 10
# rhs of IVP
f = lambda t,y: lam*y
# the solver can be simply called as before, namely as function:
ts, ys = rk2(y0, t0, T, f, Nmax)
plt.figure()
plt.plot(ts, ys, "c--o", label="$y_{\mathrm{heun}}$")
# Exact solution to compare against
y_ex = lambda t: y0*np.exp(lam*(t-t0))
```

```
# Plot the exact solution (will appear in the plot above)
plt.plot(ts, y_ex(ts), "m-", label="$y_{\mathrm{ex}}$")
plt.legend()
# Run an EOC test
Nmax_list = [4, 8, 16, 32, 64, 128]
errs, eocs = compute_eoc(y0, t0, T, f, Nmax_list, rk2, y_ex)
print(errs)
print(eocs)
# Do a pretty print of the tables using panda
import pandas as pd
from IPython.display import display
table = pd.DataFrame({'Error': errs, 'EOC' : eocs})
display(table)
```


1.3 Order conditions for Runge-Kutta Methods

The convergence theorem for one-step methods gave us some necessary conditions to guarantee that a method is convergent order of p :
"consistency order p " + "Increment function satisfies a Lipschitz condition" \Rightarrow "convergence order p.
"local truncation error behaves like $\mathcal{O}\left(\tau^{p+1}\right)$ " + "Increment function satisfies a Lipschitz condition" \Rightarrow "global truncation error behaves like $\mathcal{O}\left(\tau^{p}\right)$ "

It turns out that for f is at least C^{1} with respect to all its arguments then the increment function Φ associated with any Runge-Kutta methods satisfies a Lipschitz condition. Thus the next theorem

Theorem 1.1. Order conditions for Runge-Kutta methods.
A Runge-Kutta method has consistency order p if and only if all the conditions up to and including p in the table below are satisfied.

p	conditions
1	$\sum b_{i}=1$
2	$\sum b_{i} c_{i}=1 / 2$
3	$\sum b_{i} c_{i}^{2}=1 / 3$
	$\sum b_{i} a_{i j} c_{j}=1 / 6$
4	$\sum b_{i} c_{i}^{3}=1 / 4$
	$\sum b_{i} c_{i} a_{i j} c_{j}=1 / 8$
	$\sum b_{i} a_{i j} c_{j}^{2}=1 / 12$
	$\sum b_{i} a_{i j} a_{j k} c_{k}=1 / 24$

where sums are taken over all the indices from 1 to s.

Proof. Without proof.
Example 1.2. Applying order conditions to Heun's method.

Apply the conditions to Heun's method, for which $s=2$ and the Butcher tableau is

$$
\begin{array}{c|cc}
c_{1} & a_{11} & a_{12} \\
c_{2} & a_{21} & a_{22} \\
\hline & b_{1} & b_{2}
\end{array}=\begin{array}{c|cc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline & \frac{1}{2} & \frac{1}{2}
\end{array} .
$$

The order conditions are:

$$
p=1 \quad b_{1}+b_{2}=\frac{1}{2}+\frac{1}{2}=1
$$

$$
p=2 \quad b_{1} c_{1}+b_{2} c_{2}=\frac{1}{2} \cdot 0+\frac{1}{2} \cdot 1=\frac{1}{2}
$$

$$
\begin{aligned}
p=3 & b_{1} c_{1}^{2}+b_{2} c_{2}^{2} & =\frac{1}{2} \cdot 0^{2}+\frac{1}{2} \cdot 1^{2}=\frac{1}{2} \neq \frac{1}{3} &
\end{aligned}
$$

The method is of order 2 .

Theorem 1.2. Convergence theorem for Runge-Kutta methods.
Given the IVP $\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y}), \boldsymbol{y}(0)=\boldsymbol{y}_{0}$. Assume $f \in C^{1}$ and that a given Runge-Kutta method satisfies the order conditions from Theorem 1.1 up to order p. Then the Runge-Kutta method is convergent of order p.

Proof. Without proof.

