
Department of Mathematical Sciences

Examination paper for TMA4125/30 Matematikk 4N

Solution

Academic contact during examination:

Phone:

Examination date: August 18, 2022

Examination time (from–to): 09:00–13:00

Permitted examination support material: C.
One sheet A4 paper, approved by the department (yellow sheet, “gul ark”) with own handwritten
notes.
Certain simple calculators.

Other information:

• All answers have to be justified, and they should include enough details in order to see how
they have been obtained.

• Good Luck! | Lykke til! | Viel Glück!

Language: English

Number of pages: 21

Number of pages enclosed: 0

Checked by:

Date Signature

Informasjon om trykking av eksamensoppgave

Originalen er:

1-sidig □ 2-sidig ⊠

sort/hvit ⊠ farger □

skal ha flervalgskjema □





TMA4125/30 Matematikk 4N, 18. August 2022 Page 1 of 21

In the exam one could obtain 100 points and the exam was graded using the usual
grading scheme, i.e.

A B C D E F

100–89 88–77 76–65 64–53 52–41 40 and less
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Problem 1. (Interpolation, 12 points)

Consider the data points
𝑥𝑖 −2 0 1

𝑓 (𝑥𝑖) 2 2 4

a) Use Lagrange interpolation to find the polynomial of minimal degree interpolating
these points. Express the polynomial in the form 𝑝𝑛 (𝑥) = 𝑎𝑛𝑥

𝑛 + · · · + 𝑎1𝑥 + 𝑎0.

b) Determine the Newton form of the interpolating polynomial and express the
resulting polynomial in the form 𝑝𝑛 (𝑥) = 𝑎𝑛𝑥

𝑛 + · · · + 𝑎1𝑥 + 𝑎0.

c) Now add the data point (𝑥3, 𝑓3) = (2, 6) and compute the resulting interpolation
polynomial for the given 4 data points.

Solution.

a) Lagrange polynomial and resulting interpolation polynomial for the first 3 data
points:

𝐿0 =
𝑥 (𝑥 − 1)

6

𝐿1 = − (𝑥 − 1) (𝑥 + 2)
2

𝐿2 =
𝑥 (𝑥 + 2)

3

𝑝2(𝑥) =
𝑥 (𝑥 − 1)

3
− (𝑥 − 1) (𝑥 + 2) + 4𝑥 (𝑥 + 2)

3
=
2𝑥2

3
+ 4𝑥

3
+ 2

b) The Newton polynomials for the first three data points are

𝜔0 = 1
𝜔1 = 𝑥 + 2
𝜔2 = 𝑥 (𝑥 + 2)
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The divided difference table is given by

𝑥𝑖 𝑓 (𝑥𝑖)
−2 2
0 2 0
1 4 2 2/3

and thus the interpolation polynomial in Newton form is

𝑝2(𝑥) = 2 · 1 + 0 · (𝑥 + 2) + 2/3 · 𝑥 (𝑥 + 2) = 2𝑥2

3
+ 4𝑥

3
+ 2

c) We compute the interpolation polynomial in Newton form which only requires to
extend the divided difference table from a) accordingly using the 4th data point.

𝑥𝑖 𝑓 (𝑥𝑖)
−2 2
0 2 0
1 4 2 2/3
2 6 2 0 −1/6

The 4th Newton polynomial and final interpolation polynomial are given by

𝜔3 = 𝑥 (𝑥 − 1) (𝑥 + 2)
𝑝3(𝑥) = 2 · 1 + 0 · (𝑥 + 2) + 2/3 · 𝑥 (𝑥 + 2) − 1/6 · 𝑥 (𝑥 − 1) (𝑥 + 2)

= −𝑥
3

6
+ 𝑥2

2
+ 5𝑥

3
+ 2
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Problem 2. (Quadrature, 8 points)

a) Given are the quadrature points 𝑥0 = −2, 𝑥1 = 0 and 𝑥2 = 1. Determine cor-
responding weights 𝜔0, 𝜔1 and 𝜔2 such that the quadrature rule 𝑄 [𝑓 ] (−2, 1) :=∑2

𝑖=0𝜔𝑖 𝑓 (𝑥𝑖) has at least degree of exactness 2 on the interval [−2, 1].

Hint: You might want to solve Problem 1 first to save you some time.

b) Imagine you have a composite quadrature rule 𝐶𝑄 [·;ℎ]. Here ℎ denotes the
length of the subintervals used the composite quadrature rule. Now you perform
a convergence study using the function 𝑓 (𝑥) = cos(𝑥) + sin(𝑥) on the interval
[0, 1] and you obtain the following table

ℎ 0.5 0.25 0.125 0.0625
𝐸 (ℎ) 0.8192 0.0513 0.0032 0.000201

where 𝐸 (ℎ) =
∫ 1
0 𝑓 (𝑥)𝑑𝑥 − 𝐶𝑄 [𝑓 ;ℎ] is the quadrature error as a function of ℎ.

What convergence rate do expect for the composite quadrature rule to have and
why?

Solution.

a) We need to compute the Lagrange polynomials 𝐿0, 𝐿1 and 𝐿2 associated with the
quadrature points 𝑥0, 𝑥1, 𝑥2. Then 𝜔𝑖 are determined by

𝜔𝑖 =

∫ 1

−2
𝐿𝑖 (𝑥)𝑑𝑥

Note that we had the same points in the Problem 1, so we do not need to recompute
𝐿𝑖 , we only need to integrate the computed Lagrange polynomials

𝜔0 =

∫ 1

−2

𝑥 (𝑥 − 1)
6

𝑑𝑥 = 3/4

𝜔1 = −
∫ 1

−2

(𝑥 − 1) (𝑥 + 2)
2

𝑑𝑥 = 9/4

𝜔2 =

∫ 1

−2

𝑥 (𝑥 + 2)
3

𝑑𝑥 = 0

b) For each bisection we observe that the error is reduced by a factor of 16 = 24,
thus the convergence order seems to be 4.
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Problem 3. (Nonlinear Equations (Newton’s Method), 10 pts)

We consider the following two functions,

𝑓1(𝑥) =
{
𝑥4/3, 𝑥 ≥ 0
−|𝑥 |4/3, 𝑥 < 0,

and

𝑓2(𝑥) =
{√

𝑥, 𝑥 ≥ 0
−
√︁
|𝑥 |, 𝑥 < 0.

Both functions have a root at 𝑥𝑟 = 0. Now apply Newton’s method to both functions to
approximate the root 𝑥𝑟 numerically. For each function, determine whether Newton’s
method converges and if this is the case, determine the convergence order and an
interval for possible starting values.

Solution.

We have

𝑓 ′1 (𝑥) =
{
4
3

3√𝑥, 𝑥 > 0
4
3

3√−𝑥, 𝑥 < 0

Newton’s method yields

𝑥𝑘+1 = 𝑥𝑘 −
𝑓1(𝑥𝑘)
𝑓 ′1 (𝑥𝑘)

=
1
4
𝑥𝑘 ,

for 𝑥 ≠ 0. In this case, Newton’s method converges only lineary to zero, i.e.,

|𝑥𝑘+1 − 0| ≤ 𝑐 |𝑥𝑘 − 0|

with 0 < 𝑐 < 1. Therefore, the method converges for any starting value in R.
For the second function, we have 𝑓 ′2 (𝑥) = 1

2
√
|𝑥 |

for 𝑥 ≠ 0. Using Newton’s method, we

get for 𝑥𝑘 > 0
𝑥𝑘+1 = 𝑥𝑘 − 2

√
𝑥𝑘
√
𝑥𝑘 = −𝑥𝑘 ,

and for 𝑥𝑘 < 0
𝑥𝑘+1 = 𝑥𝑘 + 2

√−𝑥𝑘
√−𝑥𝑘 = −𝑥𝑘 .

This means that the sequence jumps with 𝑥2𝑛 = 𝑥0 and 𝑥2𝑛+1 = −𝑥0. Hence, Newton’s
method does not converge for 𝑓2, which means that no interval of convergence can be
determined.
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Problem 4. (Nonlinear Equations (Fixed Point Theory), 12 pts)

Let the sequence (𝑥𝑛)
𝑛∈N0

be defined by

𝑥𝑛+1 B
3𝑥𝑛 + 1
2𝑥𝑛 + 1

with the starting value 𝑥0 := 1.

a) Check whether the sequence (𝑥𝑛)
𝑛∈N0

is convergent and, if so, compute the limit
value 𝑥 := lim

𝑛→∞
𝑥𝑛 .

b) Determine an upper bound for |𝑥5 − 𝑥 | without calculating 𝑥5.

Solution.

a) The elements of the sequence lie obviously all in R+0 . The given sequence is an
iteration sequence to the fixed point equation

𝑥 =
3𝑥 + 1
2𝑥 + 1︸ ︷︷ ︸
𝑓 (𝑥)

, 𝑥 ∈ R+0 .

Here we can directly compute the solutions of 𝑥 = 𝑓 (𝑥), which must be in R+0 :

𝑥 =
3𝑥 + 1
2𝑥 + 1

⇔ 2𝑥2 + 𝑥 = 3𝑥 + 1 ⇔ 2𝑥2 − 2𝑥 − 1 = 0

𝑥 =
2 ±

√
4 + 2 · 2 · 1
2 · 2 =

{ 1
2 (1 +

√
3) ∈ R+0

1
2 (1 −

√
3) ∉ R+0

If the sequence converges, we have:

lim
𝑛→+∞

𝑥𝑛 =
1
2
(1 +

√
3) =: 𝑥 .

With 𝑥 ∈ R+0 , it holds 𝑓 (𝑥) ∈ R+0 .
Therefore: 𝑓 (R+0) ⊆ R+0 .
However: In R+0 , we have:

𝑓 ′(𝑥) = 3(2𝑥 + 1) − (3𝑥 + 1)2
(2𝑥 + 1)2 =

1
(2𝑥 + 1)2 > 0
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Therefore: 𝑓 ′(𝑥) = 1 for 𝑥 = 0. Therefore, we consider 𝑓 only on 𝐷 := [1, +∞[. It

holds 𝑓 (𝐷) ⊆ 𝐷 , as 𝑓 (𝑥) > 1 for all 𝑥 > 0, and 𝑓 ′(𝑥) ≤
(
1
3

)2
for 𝑥 ∈ 𝐷 . Thus, we

can use the Banach-fixed point theorem: 𝑥 is a limit point of the given sequence.

b) |𝑥5 − 𝑥 | ≤ |𝑥1 − 𝑥0 |
1 − 1

9

(
1
9

)5
=
3
8

(
1
9

)5
≈ 6.35066 · 10−6.
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Problem 5. (Laplace transform, 12 points)

a) Find 𝑦 (𝑡), 𝑡 ≥ 0 such that 𝑦 (0) = 0 and∫ 𝑡

0
𝑦′(𝑡 − 𝑢)𝑦 (𝑢) d𝑢 =

1
6
𝑡4.

b) Let 𝑎 > 0 be given. Compute the inverse Laplace transform of

𝐹 (𝑠) = −3𝑎 − 2(𝑠 + 1)
(𝑠 + 1) (𝑠 − 2)

c) Solve the initial value problem

𝑦′′ − 𝑦′ − 2𝑦 = 0
𝑦 (0) = −2
𝑦′(0) = −1

using the Laplace transform.

Hint: You might want to solve b) first.

Solution.

a) We set 𝑌 (𝑠) = L(𝑦 (𝑡)) and obtain that (1 P.)

L(𝑦′(𝑡)) = 𝑠𝑌 (𝑠) − 𝑦 (0) = 𝑠𝑌 (𝑠)

Taking the Laplace transform of the given equation, we can use that the left hand
side is a convolution. We obtain

𝑠𝑌 (𝑠)𝑌 (𝑠) = 1
6
L(𝑡4) = 1

6
24
𝑠5

=
4
𝑠5

We can divide by 𝑠 to obtain (1 P.)

(𝑌 (𝑠))2 = 4
𝑠6

So we obtain (1 P.)

𝑌 (𝑠) =
√︂

4
𝑠6

= ± 2
𝑠3

Taking the inverse Laplace transform we obtain (1 P.)

𝑦 (𝑡) = ±𝑡2
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b) We perform a partial fraction decomposition (2 P.)

𝐹 (𝑠) = −3𝑎 − 2(𝑠 + 1)
(𝑠 + 1) (𝑠 − 2) =

−3𝑎 − 2 − 2𝑠
(𝑠 + 1) (𝑠 − 2) =

𝐴

𝑠 + 1
+ 𝐵

𝑠 − 2

=
𝐴(𝑠 − 2) + 𝐵(𝑠 + 1)

(𝑠 + 1) (𝑠 − 2) =
𝑠 (𝐴 + 𝐵) + (𝐵 − 2𝐴)

(𝑠 + 1) (𝑠 − 2)

So we obtain 𝐵 − 2𝐴 = −3𝑎 − 2 and 𝐴 + 𝐵 = −2 and hence we get 𝐴 = 𝑎 and
𝐵 = −𝐴 − 2 = 𝑎 − 2. (1 P.)
We obtain from 𝐹 (𝑠) = 𝑎

𝑠+1 −
2+𝑎
𝑠−2 that (2 P.)

𝑓 (𝑡) = L−1(𝐹 ) = 𝑎e−𝑡 − (2 + 𝑎)e2𝑡

c) We apply the Laplace transform to the ODE to obtain (2 P.)

𝑠2𝑌 (𝑠) − 𝑠𝑦 (0) − 𝑦′(0) − 𝑠𝑌 (𝑠) + 𝑦 (0) − 2𝑌 (𝑠) = 𝑠2𝑌 (𝑠) + 2𝑠 + 1 − 𝑠𝑌 (𝑠) − 2 − 2𝑌 (𝑠)
= (𝑠2 − 𝑠 − 2)𝑌 (𝑠) + 2𝑠 − 1 = 0

and hence (1 P.)

𝑌 (𝑠) = 1 − 2𝑠
𝑠2 − 𝑠 − 2

=
3 − 2(𝑠 + 1)
(𝑠 + 1) (𝑠 − 2)

which is the same as in the previous subproblem with 𝑎 = −1, so we obtain (1 P.)

𝑦 (𝑡) = −e−𝑡 − e2𝑡 .
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Problem 6. (Fourier Series, 14 points)

Let

𝑓 (𝑥) =
{
𝜋
2 − 𝑥 for 0 ≤ 𝑥 < 𝜋

2 ,

0 for 𝜋
2 ≤ 𝑥 ≤ 𝜋,

𝑥 ∈ [0, 𝜋] .

We consider the odd extension 𝑓o, the even extension 𝑓e as functions on [−𝜋, 𝜋). We
define 𝑔 to be the periodic continuation of the even extension 𝑓e.

a) Sketch the function 𝑓o. In the same plot, also sketch 𝑔 on an interval of length of
at least 2 periods.

b) Compute the real Fourier series of 𝑔.

c) We denote the Fourier partial sum of the Fourier series from b) by 𝑆𝑛 .
Let 𝑥 ∈ R be given. What value does the Fourier partial sum converge to, i. e.
what is the value of lim

𝑛→∞
𝑆𝑛 (𝑥)?

d) We denote by 𝑆′𝑛 (𝑥) the derivative of the Fourier series from b), which is again a
Fourier series. Compute lim

𝑛→∞
𝑆′𝑛 (0).

Hint. It might be helpful to first think about what 𝑆′𝑛 (𝑥) converges to as a
function.

Solution.

a) The sketch looks for example like (3 P.)

−2𝜋 −3𝜋
2

−𝜋 −𝜋
2

𝜋
2

𝜋 3𝜋
2

2𝜋

−𝜋
2

𝜋
2

𝑥

𝑔(𝑥)

𝑔(𝑥)
𝑓o(𝑥)

where the important points are at 𝑘𝜋
2 , 𝑘 = −4, . . . , 4.
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b) The Fourier coefficients are 𝑏𝑛 = 0 for 𝑛 ∈ N, since 𝑔 is odd. (1 P.)
For the 𝑎0, 𝑎𝑛 we can use the formula for even functions and compute (checking
for example the 2𝐿 periodic formula, then 𝐿 = 𝜋 ).
We obtain (1 P.)

𝑎0 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑥) d𝑥 =

2
𝜋

∫ 𝜋
2

0

𝜋

2
− 𝑥 d𝑥 =

2
𝜋

[𝜋
2
𝑥 − 1

2
𝑥2

] 𝜋
2

0
=

2
𝜋

(𝜋2

4
− 𝜋2

8

)
=
𝜋

4
.

For the remaining terms we compute (2 P.)

𝑎𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑥) cos(𝑛𝑥) d𝑥

=
2
𝜋

∫ 𝜋
2

0

(𝜋
2
− 𝑥

)
cos(𝑛𝑥) d𝑥

=
2
𝜋

𝜋

2

∫ 𝜋
2

0
cos(𝑛𝑥) d𝑥 − 2

𝜋

∫ 𝜋
2

0
𝑥 cos(𝑛𝑥) d𝑥

The first term we can just integrate and for the second we use integration by
parts (note that integrating the cos here does not introduce a minus) (3 P.)

𝑎𝑛 =

[ 1
𝑛
sin(𝑛𝑥)

] 𝜋
2

0
− 2
𝜋

[𝑥
𝑛
sin(𝑛𝑥)

] 𝜋
2

0
+ 2
𝜋

∫ 𝜋
2

0
1 · 1

𝑛
sin(𝑛𝑥) d𝑥

=
1
𝑛

(
sin

(𝑛𝜋
2

)
− sin(0)

)
− 2
𝜋

( 𝜋
2𝑛

sin
(𝑛𝜋
2

)
− 0 sin(0)

)
+ 2
𝜋

[
− 1
𝑛2

cos(𝑛𝑥)
] 𝜋

2

0

=
1
𝑛
sin

(𝑛𝜋
2

)
+ 1
𝑛
sin

(𝑛𝜋
2

)
− 2
𝜋𝑛2

(
cos

𝑛𝜋

2
− 1

)
=
2
𝑛
sin

(𝑛𝜋
2

)
+ 2
𝜋𝑛2

(
cos

𝑛𝜋

2
− 1

)
c) The function 𝑔 is piecewise continuously differentiable and hence for every 𝑥 the

Fourier partial sum converges to 𝑔. (2 P.)

d) The derivative of the Fourier partial sum is itself a Fourier series.

Indeed it approximates 𝑔′(𝑥) =


1 for − 𝜋

2 < 𝑥 < 0
−1 for 0 < 𝑥 < 𝜋

2
0 else

, 𝑥 ∈ [−𝜋, 𝜋)\{−𝜋
2 , 0,

𝜋
2 },

which is not defined for 𝑥 ∈ {−𝜋
2 , 0,

𝜋
2 } since 𝑔 is not differentiable there. The

Fourier series however converges to the mean of the limits, so we get lim
𝑛→∞

𝑆′𝑛 (0) =
0. (2 P.)
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Problem 7. (Fourier Transform, 8 points)

Use the Fourier transform of 𝑓 (𝑥) = e−𝑎𝑥2 , 𝑎 > 0, to compute a closed form of

ℎ(𝑥) = e−2𝑥
2 ∗ e−2𝑥2 .

Solution.

We can use the convolution theorem (2 P.)

ℎ̂(𝜔) =
√
2𝜋𝑔(𝜔) · 𝑔(𝜔) =

√
2𝜋 (𝑓 (𝜔))2

𝑔(𝑥) = e−2𝑥2 , i.e. the given function 𝑓 with 𝑎 = 2. (1 P.)

From the formula sheet we know 𝑔(𝜔) = 1
2e

−𝜔2
8 (1 P.)

So we obtain for ℎ̂ (2 P.)

ℎ̂(𝜔) =
√
2𝜋

( 1
2
e−

𝜔
8

)2
=
√
2𝜋

1
4
e−

𝜔2
4 =

2
4
√
𝜋

1
√
2
e−

𝜔2
4

with is up to the first two factors the function 𝑓 with 𝑎 = 1 (1 P.)

ℎ̂(𝜔) =
√
𝜋

2
F

(
e−𝑥

2
)

and hence ℎ(𝑥) =
√
𝜋

2 e−𝑥2 . (1 P.)
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Problem 8. (Numerical Methods for Ordinary Differential Equations, 12 points)

To solve a general first-order ordinary equation of the form

𝑦′(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) for 𝑡 > 𝑡0, 𝑦 (𝑡0) = 𝑦0

numerically, we consider the explicit Runge-Kutta method known asRalston’smethod
with 3 stages which is given by the Butcher tableau

0 0 0 0
1/2 1/2 0 0
3/4 0 3/4 0

2/9 1/3 4/9

a) Determine the consistency order of this Runge-Kutta method.

b) Now complete all gaps indicated by . . . in the following Python code snippet to
provide an implementation of Ralston’s method. Assume a uniform time-step
size. Arguments passed the rkm function argument are

• y0 : initial value
• t0 : initial time
• T : final time
• f : right-hand side of the ordinary differential equation
• Nmax: number of time-steps

import numpy as np

def rkm(y0, t0, T, f, Nmax):
ts = [t0]
ys = [y0]
dt = ...

while (ts[-1] < T):
t, y = ts[-1], ys[-1]

k1 = ...
k2 = ...
k3 = ...

ys.append (...)
ts.append (...)

return np.array(ts), np.array(ys)
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c) Next, consider another explicit Runge-Kutta method, this time given by the
Butcher tableau

0 0 0 0 0
1/2 1/2 0 0 0
3/4 0 3/4 0 0
1 2/9 1/3 4/9 0

7/24 1/4 1/3 1/8
This Runge-Kutta method is known to have consistency order 4 and can be
combined with Ralston’s method to devise an adaptive Runge-Kutta method.
Write down the final Butcher tableau for the resulting adaptive embedded
Runge-Kutta method and give a short explanation of how you found the final
Butcher tableau.

Solution.

a) A general Runge–Kutta method is described by the tableau

𝑐1 𝑎11 𝑎12 . . . 𝑎1𝑠
𝑐2 𝑎21 𝑎22 . . . 𝑎2𝑠
...

...
...

. . .
...

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 . . . 𝑎𝑠𝑠
𝑏1 𝑏2 . . . 𝑏𝑠

and the order 𝑝 of consistency can be determined by verifying the conditions below
(see formula sheet):
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𝑝 Conditions

1
𝑠∑
𝑖=1

𝑏𝑖 = 1

2
𝑠∑
𝑖=1

𝑏𝑖𝑐𝑖 =
1
2

3
𝑠∑
𝑖=1

𝑏𝑖𝑐𝑖
2 = 1

3
𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑏𝑖𝑎𝑖 𝑗𝑐 𝑗 =
1
6

4
𝑠∑
𝑖=1

𝑏𝑖𝑐𝑖
3 = 1

4
𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑏𝑖𝑐𝑖𝑎𝑖 𝑗𝑐 𝑗 =
1
8

𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑏𝑖𝑎𝑖 𝑗𝑐 𝑗
2 = 1

12
𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑠∑
𝑘=1

𝑏𝑖𝑎𝑖 𝑗𝑎 𝑗𝑘𝑐𝑘 = 1
24

The method will be consistent of order 𝑝 if, and only if, all conditions up to the 𝑝-th
row are fulfilled. For Ralston’s method, we have

𝑠∑︁
𝑖=1

𝑏𝑖 =
2
9
+ 1
3
+ 4
9
= 1

𝑠∑︁
𝑖=1

𝑏𝑖𝑐𝑖 =
2
9
× 0 + 1

3
× 1
2
+ 4
9
× 3
4
=

1
2

𝑠∑︁
𝑖=1

𝑏𝑖𝑐𝑖
2 =

2
9
× 02 + 1

3
×

(
1
2

)2
+ 4
9
×

(
3
4

)2
=

1
2

𝑠∑︁
𝑖=1

𝑠∑︁
𝑗=1

𝑏𝑖𝑎𝑖 𝑗𝑐 𝑗 = 𝑏1(𝑎11𝑐1 + 𝑎12𝑐2 + 𝑎13𝑐3) + 𝑏2(𝑎21𝑐1 + 𝑎22𝑐2 + 𝑎23𝑐3) + 𝑏3(𝑎31𝑐1 + 𝑎32𝑐2 + 𝑎33𝑐3)

=
2
9
× 0 + 1

3

(
1
2
× 0

)
+ 4
9

(
0 × 0 + 3

4
× 1
2
+ 0 × 3

4

)
=

1
6

𝑠∑︁
𝑖=1

𝑏𝑖𝑐𝑖
3 =

2
9
× 03 + 1

3
×

(
1
2

)3
+ 4
9
×

(
3
4

)3
=

11
48

≠
1
4
.

Therefore, the method is third-order consistent.
b)
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import numpy as np

def rkm(y0, t0, T, f, Nmax):
ts = [t0]
ys = [y0]
dt = (T-t0)/Nmax

while (ts[-1] < T):
t, y = ts[-1], ys[-1]

k1 = f(t,y)
k2 = f(t+1/2*dt,y+1/2*dt*k1)
k3 = f(t+3/4*dt,y+dt*3/4*k2)

ys.append(y + dt /9*(2* k1+3*k2+4*k3))
ts.append(t + dt)

return np.array(ts), np.array(ys)

c) For any given Butcher coefficients 𝑐4 and {𝑎4 𝑗 }4𝑗=1, Ralston’s method can formally
be written as a 4-stage Runge-method by simply setting the 4th weight 𝑏4 to 0, thus
ignoring any information from the 4th stage computation. Thus the 3rd order 3 stage
Ralston method

0 0 0 0
1/2 1/2 0 0
3/4 0 3/4 0

2/9 1/3 4/9
is equivalent to

0 0 0 0 0
1/2 1/2 0 0 0
3/4 0 3/4 0 0
1 2/9 1/3 4/9 0

2/9 1/3 4/9 0

Combining this table with the 4th order table from c) we obtain the final Butcher tableau
for the embedded Runge-Kutta method:

0 0 0 0 0
1/2 1/2 0 0 0
3/4 0 3/4 0 0
1 2/9 1/3 4/9 0

2/9 1/3 4/9 0
7/24 1/4 1/3 1/8
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Problem 9. (Heat equation, 12 pts)

Consider the following heat equation

𝑢𝑡 (𝑥, 𝑡) = 𝑐2𝑢𝑥𝑥 (𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ (0, 4𝜋)

with boundary conditions

𝑢 (0, 𝑡) = 𝑢 (4𝜋, 𝑡) = 0, 𝑡 > 0

and initial condition

𝑢 (𝑥, 0) = max {0,− sin(𝑥/2)} , 𝑥 ∈ (0, 4𝜋).

a) Show that the Fourier sine series solution of this above heat equation with
boundary conditions is

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑢𝑛 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐵𝑛 sin
(𝑛𝑥
4

)
𝑒−

𝑐2𝑛2𝑡
16

with real numbers 𝐵𝑛 , 𝑛 ≥ 1, by using the separation of variables method.

b) Compute the Fourier sine series solution of the above heat equation with the
given boundary conditions and initial conditions. Write down the three first
non-zero terms of the solution.
Hint: You may use the following identities:

sin(𝑎 + 𝑏) sin(𝑎 − 𝑏) = sin2(𝑎) − sin2(𝑏) (1)∫
sin2(𝑘𝑥) d𝑥 =

𝑥

2
− sin(2𝑘𝑥)

4𝑘
+ constant for some 𝑘 ∈ R. (2)

Solution.

a) We set
𝑢 (𝑥, 𝑡) = 𝐹 (𝑥)𝐺 (𝑡).

This gives

𝐹 (𝑥)𝐺′(𝑡) = 𝑐2𝐹 ′′(𝑥)𝐺 (𝑡).

Separation of variables leads to

𝐺′

𝑐2𝐺
=
𝐹 ′′

𝐹
.
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As the left-hand side depends only on 𝑡 and the right-hand side only on 𝑥 , both
fractions must be equal to a constant, say 𝑘 . For 𝑘 ≥ 0 we get the trivial solution
𝑢 ≡ 0. Therefore, 𝑘 < 0, and we set 𝑘 = −𝑝2. We get the two ODEs:

𝐹 ′′ + 𝑝2𝐹 = 0
𝐺′ + 𝑐2𝑝2𝐺 = 0.

The first ODE has the general solution

𝐹 (𝑥) = 𝐴 cos(𝑝𝑥) + 𝐵 sin(𝑝𝑥).

Using the boundary conditions, we get

𝑢 (0, 𝑡) = 𝐹 (0)𝐺 (𝑡) = 0 = 𝑢 (4𝜋, 𝑡) = 𝐹 (4𝜋)𝐺 (𝑡).

This gives 𝐹 (0) = 𝐹 (4𝜋) = 0, as otherwise we would get 𝐺 (𝑡) ≡ 0. Then
𝐹 (0) = 𝐴 = 0 and 𝐹 (4𝜋) = 𝐵 sin(4𝑝𝜋) = 0 with 𝐵 ≠ 0, thus 𝑝 = 𝑛𝜋

4𝜋 = 𝑛
4 ,

𝑛 = 1, 2, . . .. We can set 𝐵 = 1 and obtain 𝐹𝑛 (𝑥) = sin
(
𝑛𝑥
4
)
. The second ODE has

the form (with 𝑝 = 𝑛
4 )

𝐺′ + 𝑐2𝑝2𝐺 = 𝐺′ + (𝑐𝑛/4)2𝐺 = 0.

Its general solution is
𝐺𝑛 = 𝐵𝑛𝑒

−(𝑐𝑛/4)2𝑡

Hence (for 𝑛 = 1, 2, 3, . . .), the function

𝑢𝑛 (𝑥, 𝑡) = 𝐹𝑛𝐺𝑛 = 𝐵𝑛 sin
(𝑛𝑥
4

)
𝑒−(𝑐𝑛/4)

2𝑡

solves the heat equation with the given boundary conditions. Therefore (i.e.
because of the superposition principle), the series

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑢𝑛 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐵𝑛 sin
(𝑛𝑥
4

)
𝑒−

𝑐2𝑛2𝑡
16

is also a solution of the problem.

b) The solution of the problem is

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑢𝑛 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐵𝑛 sin
(𝑛𝑥
4

)
𝑒−

𝑐2𝑛2𝑡
16 .
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The initial condition gives

𝑢 (𝑥, 0) =
∞∑︁
𝑛=1

𝑢𝑛 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐵𝑛 sin
(𝑛𝑥
4

)
= max(0,− sin(𝑥/2))

=

{
0 if 0 ≤ 𝑥 ≤ 2𝜋 ,
− sin(𝑥/2) if 2𝜋 < 𝑥 ≤ 4𝜋

with

𝐵𝑛 =
2
4𝜋

∫ 4𝜋

0
max (0,− sin(𝑥/2)) sin

(𝑛𝑥
4

)
𝑑𝑥

=
1
2𝜋

∫ 4𝜋

2𝜋
− sin(𝑥/2) · sin(𝑛𝑥/4)𝑑𝑥.

For even 𝑛, this is zero (shift interval around zero and cf. lecture)

𝑛 odd
=

−1
2𝜋

·
∫ 4𝜋

2𝜋
sin

(
(𝑛 + 2)𝑥

8
− (𝑛 − 2)𝑥

8

)
· sin

(
(𝑛 + 2)𝑥

8
+ (𝑛 − 2)𝑥

8

)
𝑑𝑥

(1)
=

−1
2𝜋

·
∫ 4𝜋

2𝜋
sin2

(
𝑛 + 2
8

𝑥

)
− sin2

(
𝑛 − 2
8

𝑥

)
𝑑𝑥

(2)
=

−1
2𝜋

·
[
𝑥

2
− sin(2(𝑛 + 2)𝑥/8)

4𝑛+28
− 𝑥

2
+ sin(2(𝑛 − 2)𝑥/8)

4𝑛−28

]4𝜋
2𝜋

=
−1
𝜋

·
[
sin((𝑛 − 2)𝑥/4)

𝑛 − 2
− sin((𝑛 + 2)𝑥/4)

𝑛 + 2

]4𝜋
2𝜋

=
−1
𝜋

·
(
(−1) 𝑛−12
𝑛 − 2

− (−1) 𝑛−12
𝑛 + 2

)
,

where we only needed the lower integration bounds in the last step. Therefore,
we have

𝐵1 =
−8
3𝜋

, 𝐵2 = 0, 𝐵3 =
8
5𝜋

, 𝐵4 = 0, 𝐵5 =
−8
21𝜋

, . . .

Finally, we have

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑢𝑛 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐵𝑛 sin(𝑛𝑥/4)𝑒−𝑐
2𝑛2𝑡/16

=
8
𝜋

(
−sin(𝑥/4)

3
𝑒−𝑐

2𝑡/16 + sin(3𝑥/4)
5

𝑒−9𝑐
2𝑡/16 − sin(5𝑥/4)

21
𝑒−25𝑐

2𝑡/16 ± . . .

)
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Formula Sheet. TMA4125/30/35 Matematikk 4N/D, Summer 2022.
Fourier Transform. The Fourier Transform 𝑓 = F (𝑓 ) and its inverse 𝑓 = F −1(𝑓 ) are

𝑓 (𝜔) = F (𝑓 ) (𝜔) = 1
√
2𝜋

∫ ∞

−∞
𝑓 (𝑥)e−i𝜔𝑥 d𝑥 and 𝑓 (𝑥) = F −1(𝑓 ) (𝑥) = 1

√
2𝜋

∫ ∞

−∞
𝑓 (𝜔)ei𝜔𝑥 d𝜔

Laplace Transform. The Laplace transform 𝐹 (𝑠) of 𝑓 (𝑡), 𝑡 ≥ 0, reads

𝐹 (𝑠) =
∫ ∞

0
e−𝑠𝑡 𝑓 (𝑡) d𝑡

List of Fourier Transforms.

𝑓 (𝑥) 𝑓 (𝜔)

e−𝑎𝑥2
1

√
2𝑎

e−
𝜔2
4𝑎

e−𝑎 |𝑥 |
√︂

2
𝜋

𝑎

𝜔2 + 𝑎2

1
𝑥2 + 𝑎2

for 𝑎 > 0
√︂

𝜋

2
e−𝑎 |𝜔 |

𝑎{
1 for |𝑥 | < 𝑎

0 otherwise.

√︂
2
𝜋

sin(𝜔𝑎)
𝜔

List of Laplace Transforms.

𝑓 (𝑡) 𝐹 (𝑠)

cos(𝜔𝑡) 𝑠

𝑠2 + 𝜔2

sin(𝜔𝑡) 𝜔

𝑠2 + 𝜔2

cosh(𝜔𝑡) 𝑠

𝑠2 − 𝜔2

sinh(𝜔𝑡) 𝜔

𝑠2 − 𝜔2

𝑡𝑛
Γ(𝑛 + 1)
𝑠𝑛+1

, see Note(𝑎)

e𝑎𝑡
1

𝑠 − 𝑎

𝑓 (𝑡 − 𝑎)𝑢 (𝑡 − 𝑎) e−𝑠𝑎𝐹 (𝑠)

𝛿 (𝑡 − 𝑎) e−𝑠𝑎
(𝑎) where for 𝑛 ∈ N we have Γ(𝑛 + 1) = 𝑛!

Trigonometric identities.

• cos(𝛼 + 𝛽) = cos𝛼 cos 𝛽 − sin𝛼 sin 𝛽

• sin(𝛼 + 𝛽) = sin𝛼 cos 𝛽 + cos𝛼 sin 𝛽

• sin𝛼 cos 𝛽 = 1
2
(
sin(𝛼 − 𝛽) + sin(𝛼 + 𝛽)

)
• cos(2𝛼) = 2 cos2(𝛼) − 1 = 1 − 2 sin2(𝛼)

• 2 sin𝛼 cos 𝛽 = sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)
• 2 cos𝛼 sin 𝛽 = sin(𝛼 + 𝛽) − sin(𝛼 − 𝛽)
• 2 cos𝛼 cos 𝛽 = cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽)
• 2 sin𝛼 sin 𝛽 = cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)

We also discussed the sinus cardinalis sinc(𝑥) = sin𝑥
𝑥

.

Fourier Series. For a 2𝜋-periodic function 𝑓 we can write

𝑓 ∼
∞∑︁

𝑘=−∞
𝑐𝑘ei𝑘𝑥 =

𝑎0

2
+

∞∑︁
𝑛=1

𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)

with coefficients

𝑎𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) cos(𝑛𝑥) d𝑥, 𝑛 = 0, 1, 2, . . . , 𝑏𝑛 =

1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) sin(𝑛𝑥) d𝑥, 𝑛 = 1, 2, . . . ,

𝑐𝑘 =
1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)e−i𝑘𝑥 d𝑥, 𝑘 ∈ Z.
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Order conditions for Runge-Kutta methods

𝑝 Conditions

1
𝑠∑
𝑖=1

𝑏𝑖 = 1

2
𝑠∑
𝑖=1

𝑏𝑖𝑐𝑖 =
1
2

3
𝑠∑
𝑖=1

𝑏𝑖𝑐𝑖
2 = 1

3
𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑏𝑖𝑎𝑖 𝑗𝑐 𝑗 =
1
6

4
𝑠∑
𝑖=1

𝑏𝑖𝑐𝑖
3 = 1

4
𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑏𝑖𝑐𝑖𝑎𝑖 𝑗𝑐 𝑗 =
1
8

𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑏𝑖𝑎𝑖 𝑗𝑐 𝑗
2 = 1

12
𝑠∑
𝑖=1

𝑠∑
𝑗=1

𝑠∑
𝑘=1

𝑏𝑖𝑎𝑖 𝑗𝑎 𝑗𝑘𝑐𝑘 = 1
24


