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In the exam one could obtain 100 points and the exam was graded using the usual
grading scheme, i.e.

A B C D E F

100–89 88–77 76–65 64–53 52–41 40 and less

And the grades are distributed as follows, where we split those that handed in an empty
exam

A B C D E F empty
∑

6 16 50 55 71 72 14 284
2.1 % 5.6 % 17.6 % 19.4 % 25 % 25.4 % 4.9%
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Problem 1. (Polynomial interpolation, 8 points)

Find the polynomial 𝑝 (𝑥) of lowest possible degree that interpolates the following
values.

𝑥𝑖 −2 −1 0 1 2

𝑦𝑖
1
2 5 5

2 −1 1
2

Solution.

A relatively short solution is the following: Since both 𝑥1 and 𝑥5 have the value 1
2 we

can write (1 P.)

𝑝 (𝑥) = 𝑞(𝑥) + 1
2

or 𝑞(𝑥) = 𝑝 (𝑥) − 1
2

such that 𝑞(−2) = 𝑞(2) = 0. This means we can write (1 P.)

𝑞(𝑥) = (𝑥 − 2) (𝑥 + 2)𝑟 (𝑥) = (𝑥2 − 4)𝑟 (𝑥)

Plugging the remaining points into this, we obtain (3 P.)

5 = 𝑝 (−1) = 𝑞(−1) + 1
2
=
(
(−1)2 − 4

)
𝑟 (−1) + 1

2
= −3𝑟 (−1) + 1

2
⇒ −3𝑟 (−1) = 9

2
⇒ 𝑟 (−1) = −3

2
5
2
= 𝑝 (0) = 𝑞(0) + 1

2
=
(
02 − 4

)
𝑟 (−1) − 1

2
= −4𝑟 (0) + 1

2
⇒ −4𝑟 (0) = 2 ⇒ 𝑟 (0) = − 1

2
−1 = 𝑝 (1) = 𝑞(1) + 1

2
=
(
12 − 4

)
𝑟 (1) + 1

2
= −3𝑟 (1) + 1

2
⇒ −3𝑟 (1) = −3

2
⇒ 𝑟 (1) = 1

2

And we can easily see that 𝑟 (𝑥) = 𝑥 − 1
2 . Hence we obtain 𝑞(𝑥) = (𝑥2 − 4) (𝑥 − 1

2 ) and
therefore

𝑝 (𝑥) = 𝑞(𝑥) + 1
2
= 𝑥3 − 1

2
𝑥2 − 4𝑥 + 5

2
(3 P.)
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Newton Scheme.

For the newton Scheme we obtain the polynomials (3 P.)
𝑤0(𝑥) = 1
𝑤1(𝑥) = (𝑥 + 2)
𝑤2(𝑥) = (𝑥 + 2) (𝑥 + 1) = 𝑥2 + 3𝑥 + 2
𝑤3(𝑥) = (𝑥 + 2) (𝑥 + 1)𝑥 = 𝑥3 + 3𝑥2 + 2𝑥
𝑤4(𝑥) = (𝑥 + 2) (𝑥 + 1)𝑥 (𝑥 − 1) = 𝑥4 + 3𝑥3 + 2𝑥2 − 𝑥3 − 3𝑥2 − 2𝑥 = 𝑥4 + 2𝑥3 − 𝑥2 − 2𝑥
and the Newton scheme looks as follows. Note since we have equidistant nodes, the
denominator is just always equal to the number of nodes involved (4 P.)
𝑖 𝑥𝑖 𝑦𝑖 = 𝑓 [𝑥𝑖] 𝑓 [𝑥𝑖, 𝑥𝑖+1] 𝑓 [𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2] 𝑓 [𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3] 𝑓 [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]

1 −2 1
2

5 − 1
2

−1 − (−2) =
9
2

2 −1 5
− 5

2 −
9
2

2
= −7

2
5
2 − 5

0 − (−1) = −5
2

− 1
2 −

(
− 7

2
)

3
= 1

3 0
5
2

− 7
2 −

(
− 5

2
)

2
= − 1

2
1 − 1
4

= 0

−1 − 5
2

1 − 0
= −7

2

5
2 −

(
− 1

2
)

3
= 1

4 1 −1
3
2 −

(
− 7

2
)

2
=
5
2

1
2 − (−1)
2 − 1

=
3
2

5 2
1
2

Hence we obtain (1 P.)

𝑝 (𝑥) = 1
2
𝑤0 +

9
2
𝑤1(𝑥) −

7
2
𝑤2(𝑥) + 1𝑤3(𝑥) − 0𝑤4(𝑥)

=
1
2
+ 9
2
(𝑥 + 2) − 7

2
(𝑥2 + 3𝑥 + 2) + (𝑥3 + 3𝑥2 + 2𝑥)

=
1
2
+ 9
2
𝑥 + 9 − 7

2
𝑥2 − 21

2
𝑥 − 7 + 𝑥3 + 3𝑥2 + 2𝑥

= 𝑥3 − 1
2
𝑥2 − 4𝑥 + 5

2
.
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Lagrange Interpolation.

We can alternatively use Lagrange interpolation: ℓ𝑖 (𝑥) =
𝑛−1∏
𝑗=0
𝑗≠𝑖

𝑥 − 𝑥 𝑗

𝑥𝑖 − 𝑥 𝑗
. We obtain (5 P.)

ℓ0(𝑥) =
(𝑥 + 1)𝑥 (𝑥 − 1) (𝑥 − 2)

(−2 + 1) (−2) (−2 − 1) (−2 − 2) =
(𝑥2 − 1)𝑥 (𝑥 − 2)
(−1) (−2) (−3) (−4) =

1
24

(𝑥4 − 2𝑥3 − 𝑥2 + 2𝑥)

ℓ1(𝑥) =
(𝑥 + 2)𝑥 (𝑥 − 1) (𝑥 − 2)

1(−1) (−2) (−3) =
(𝑥2 − 4)𝑥 (𝑥 − 1)

−6 = − 1
6
(𝑥4 − 𝑥3 − 4𝑥2 + 4𝑥)

ℓ2(𝑥) =
(𝑥 + 2) (𝑥 + 1) (𝑥 − 2) (𝑥 − 1)

2 · 1(−1) (−2) =
(𝑥2 − 4) (𝑥2 − 1)

4
=

1
4
(𝑥4 − 5𝑥2 + 4)

ℓ3(𝑥) =
(𝑥 + 2) (𝑥 + 1)𝑥 (𝑥 − 2)

−6 = − 1
6
(𝑥4 + 𝑥3 − 4𝑥2 − 4𝑥)

ℓ4(𝑥) =
(𝑥 + 2) (𝑥 + 1)𝑥 (𝑥 − 1)

4 · 3 · 2 · 1 =
1
24

(𝑥4 + 2𝑥3 − 𝑥2 − 2𝑥)

So we obtain (3 P.)

𝑝 (𝑥) = 1
2
ℓ0(𝑥) + 5ℓ1(𝑥) +

5
2
ℓ2(𝑥) − ℓ3(𝑥) +

1
2
ℓ4(𝑥)

=

( 1
48

− 5
6
+ 5
8
+ 1
6
+ 1
48

)
𝑥4 +

(
− 1
24

+ 5
6
− 25

8
+ 1
6
+ 1
24

)
𝑥3 +

(
− 1
48

+ 10
3
− 25

8
− 2
3
− 1
48

)
𝑥2

+
( 1
24

− 10
3
+ 2
3
− 1
24

)
𝑥 − 5

2

= 𝑥3 − 1
2
𝑥2 − 4𝑥 + 5

2
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Problem 2. (Fixed-point and Newton iterations, 16 points)

In pipeline design for oil transport, pressure losses must be carefully estimated. They are
directly proportional to a positive friction factor 𝑘 , whose inverse square root 𝑥 := 1/

√
𝑘

is given by a non-linear equation. For a turbulent flow, the equation to find 𝑥 is

𝑥 = 𝑔(𝑥), with 𝑔(𝑥) := −1.93 ln(𝑥) + 15.9 , (1)

in which ln(𝑥) denotes the natural logarithm, that is, the logarithm whose basis is
Euler’s number: e ≈ 2.7183.

a) Compute 𝑔′(𝑥).
Use the result to determine whether 𝑔(𝑥), 𝑥 > 0, is an increasing, decreasing or a
non-monotonic function.

b) Calculate the maximum and minimum values of 𝑔(𝑥) in the interval 𝑥 ∈ [e, e3].

c) Show that |𝑔′(𝑥) | < 1 for 𝑥 ∈ [e, e3].

d) Starting from an initial value 𝑥 (0) = e2, does the fix point iteration converge?
Explain your answer.

e) For 𝑥 (0) = e2, perform the first fixed-point iteration for the solution of Equation 1.

f) For 𝑥 (0) = e2, perform the first Newton iteration for the solution of Equation 1.

Solution.

a) We differentiate 𝑔(𝑥) to get (1 P.)

𝑔′(𝑥) = −1.93
𝑥

,

which is always negative for 𝑥 > 0. Therefore, 𝑔(𝑥) is a decreasing function.(1 P.)

b) Since 𝑔(𝑥) is decreasing, for 𝑥 ∈ [e, e3] we have (1 P.)

𝑔(e3) ≤ 𝑔(𝑥) ≤ 𝑔(e) , that is, 𝑔( [e, e3]) = [10.11, 13.97] ⊂ (e, e3) .

(1 P.)
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c) Since 𝑔′(𝑥) is an increasing function, we have (1 P.)

𝑔′(e) ≤ 𝑔′(𝑥) ≤ 𝑔′(e3) , that is, − 1.93
e

≤ 𝑔′(𝑥) ≤ −1.93
e3

.

Hence, we have |𝑔′(𝑥) | ≤ 1.93e−1 < 1 for all 𝑥 ∈ (e, e3). (1 P.)
Alternatively. For 𝑥 > 2 we have −1 < 𝑔′(𝑥) < 0 and hence since 2 < e < e3 the
statement holds. (2 P.)

d) Since all three conditions (3 P.)

(𝑖) 𝑔′(𝑥) ∈ 𝐶0 [e, e3] ,
(𝑖𝑖) 𝑔( [e, e3]) ⊂ [e, e3] ,
(𝑖𝑖𝑖) |𝑔′(𝑥) | < 1 for all 𝑥 ∈ [e, e3]

are fulfilled, the fixed-point iteration converges for 𝑥 (0) ∈ [e, e3]. (1 P.)

e) The first iteration is given by (1 P.)

𝑥 (1) = −1.93 ln(𝑥 (0)) + 15.9 = 12.04 .

f) To compute a Newton iteration, we first rewrite the non-linear equation as (2 P.)

𝑓 (𝑥) = 𝑥 − 𝑔(𝑥) = 𝑥 + 1.93 ln(𝑥) − 15.9 , so that 𝑓 ′(𝑥) = 1 − 𝑔′(𝑥) = 1 + 1.93
𝑥

.

The Newton iteration then reads (2 P.)

𝑥 (1) = 𝑥 (0) − 𝑓 (𝑥 (0))
𝑓 ′(𝑥 (0))

= 𝑥 (0) − 𝑥 (0) + 1.93 ln (𝑥 (0)) − 15.9
1 + 1.93/𝑥 (0) =

15.9 + 1.93
[
1 − ln (𝑥 (0))

]
1 + 1.93/𝑥 (0) .

For 𝑥 (0) = e2, we get (1 P.)

𝑥 (1) =
13.97

1 + 1.93e−2
≈ 11.0768 .

Another possible reformulation is 𝑓 (𝑥) = 𝑔(𝑥) − 𝑥 then 𝑥 (1) = −1.53029 which is
also a correct solution.
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Problem 3. (Ralston’s method, 14 points)

For the ordinary differential equation

𝑦′(𝑡) = −6𝑦 (𝑡) , with 𝑦 (0) = 1 ,

consider Ralston’s method given by the following Butcher tableau:

0 0 0
2/3 2/3 0

1/4 3/4

Using the tableau and expanding the stage derivatives 𝑘𝑖 , we can write the solution
𝑦𝑛+1 in terms of the previous one, 𝑦𝑛 , and of the time-step size ℎ > 0. More precisely:

𝑦𝑛+1 = 𝑅(ℎ)𝑦𝑛 , so that 𝑦𝑛 = [𝑅(ℎ)]𝑛 𝑦 (0) ,

in which 𝑅(ℎ) is a second-degree polynomial.

a) How many stages does this Runge–Kutta method have?

b) Determine the polynomial 𝑅(ℎ).

c) Using the expression obtained for 𝑅(ℎ), determine for what range of step sizes
this algorithm is stable.

Solution.

a) The tableau shows that the method has 2 stages. (1 P.)

b) From the tableau and the ODE, we can write (6 P.)

𝑘1 = 𝑓 (𝑡𝑛 + 0 · ℎ, 𝑦𝑛 + 0 · ℎ𝑘1 + 0 · ℎ𝑘2) = 𝑓 (𝑡𝑛, 𝑦𝑛) = −6𝑦𝑛 ,
𝑘2 = 𝑓 (𝑡𝑛 + 2ℎ/3, 𝑦𝑛 + 2/3 · ℎ𝑘1 + 0 · ℎ𝑘2) = 𝑓 (𝑡𝑛 + 2ℎ/3, 𝑦𝑛 − 4ℎ𝑦𝑛) = −6(𝑦𝑛 − 4ℎ𝑦𝑛) ,

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

4
(𝑘1 + 3𝑘2) = 𝑦𝑛 − 6ℎ𝑦𝑛 + 18ℎ2𝑦𝑛 = (1 − 6ℎ + 18ℎ2)𝑦𝑛 .

Hence, 𝑅(ℎ) = 1 − 6ℎ + 18ℎ2. (1 P.)
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c) Stability means that 𝑦𝑛 does not tend to infinity for 𝑛 → ∞. (1 P.)
Since 𝑦𝑛 = [𝑅(ℎ)]𝑛 𝑦 (0) and (2 P.)

𝑅(ℎ) = 1 − 6ℎ + 18ℎ2 =
(6ℎ − 1)2 + 1

2
> 0 for all ℎ ∈ R ,

all we need to guarantee is 𝑅(ℎ) ≤ 1, that is, (1 P.)

1 − 6ℎ + 18ℎ2 ≤ 1 ⇔ −6ℎ + 18ℎ2 ≤ 0 ⇔ 6ℎ(3ℎ − 1) ≤ 0 .

Since ℎ > 0 we can divide by 6ℎ to obtain 3ℎ − 1 ≤ 0, which yields ℎ ≤ 1
3

(1 P.)

For any ℎ larger than that, the solution will diverge. Hence: ℎmax = 1/3, or (1 P.)

0 < ℎ ≤ 1
3
.
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Problem 4. (Laplace transform, 12 points)

a) Compute the Laplace transform of

𝑓 (𝑡) = 𝑡2e−4𝑡 .

b) For a given constant 𝑎 ∈ R, show that the inverse Laplace transform of

𝑌 (𝑠) = 𝑠 + 𝑎

(𝑠 − 2)2

is

𝑦 (𝑡) = L−1(𝑌 ) (𝑡) = e2𝑡 [1 + (𝑎 + 2)𝑡] .

c) Solve the initial value problem

𝑦′′ − 4𝑦′ + 4𝑦 = 0 , 𝑦′(0) = 𝑦 (0) = 1,

using the Laplace transform.

Solution.

a) By definition we have (2 P.)

𝐹 (𝑠) =
∫ ∞

0
𝑡2e−4𝑡e−𝑠𝑡 d𝑡 =

∫ ∞

0
𝑡2e−(𝑠+4)𝑡 d𝑡

Hence 𝐹 (𝑠) = L(𝑡2) (𝑠 + 4) and we can look up that L(𝑡2) = 2
𝑠3
to obtain (2 P.)

𝐹 (𝑠) = 2
(𝑠 + 4)3 .

Alternatively. One can also solve the integral by applying integration by parts
twice. There are also several other approaches to compute this.

b) We can decompose 𝑌 (𝑠) as (2 P.)

𝑌 (𝑠) = 𝑠 + 𝑎

(𝑠 − 2)2 =
𝑠 − 2

(𝑠 − 2)2 +
2 + 𝑎

(𝑠 − 2)2 =
1

(𝑠 − 2) +
2 + 𝑎

(𝑠 − 2)2 .

Using the shift theorem we obtain (2 P.)

𝑦 (𝑡) = L−1 [(𝑠 − 2)−1
]
(𝑡) + (2 + 𝑎)L−1 [(𝑠 − 2)−2

]
(𝑡) = e2𝑡 [1 + (𝑎 + 2)𝑡] .
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c) Applying the Laplace transform to the ODE, with the boundary conditions we
get (2 P.)

0 = L(𝑦′′ − 4𝑦′ + 4𝑦) =
(
𝑠2𝑌 (𝑠) − 1 · 𝑠 − 1

)
− 4 (𝑠𝑌 (𝑠) − 1) + 4𝑌 (𝑠) ,

so that (1 P.)

𝑌 (𝑠) = 𝑠 − 3
(𝑠 − 2)2 .

Now we can use what was done in b), with 𝑎 = −3, to compute the inverse
transform (1 P.)

𝑦 (𝑡) = L−1(𝑌 ) (𝑡) = e2𝑡 [1 + (−3 + 2)] = e2𝑡 (1 − 𝑡) .
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Problem 5. (Fourier Series, 14 points)

Let 𝑔 be the periodic continuation of the odd extension 𝑓o : [−𝜋, 𝜋) → R for

𝑓 (𝑥) =
{
0 for 0 ≤ 𝑥 < 𝜋

2 ,
𝜋
2 − 𝑥 for 𝜋

2 ≤ 𝑥 ≤ 𝜋,
𝑥 ∈ [0, 𝜋] .

a) Sketch the function 𝑔 on an interval of length of at least 2 periods.

b) Compute the real Fourier series of 𝑔. Simplify the result.

c) We denote the Fourier partial sum of the Fourier series from b) by 𝑆𝑛 .
Let 𝑥0 = 𝜋 and 𝑥1 = −𝜋

2 . What values do the Fourier partial sums converge to, i. e.
what are the limits lim

𝑛→∞
𝑆𝑛 (𝑥0) and lim

𝑛→∞
𝑆𝑛 (𝑥1)?

Solution.

a) The sketch looks for example like (2 P.)

−2𝜋 −3𝜋
2

−𝜋 −𝜋
2

𝜋
2

𝜋 3𝜋
2

2𝜋

−𝜋
2

𝜋
2

𝑥

𝑔(𝑥)

where the important points are at 𝑘𝜋
2 , 𝑘 = −4, . . . , 4.

b) The Fourier coefficients are 𝑎0 = 𝑎𝑛 = 0 for 𝑛 ∈ N, since 𝑔 is odd. (1 P.)
For the 𝑏𝑛 we can use the formula for odd functions and compute (checking for
example the 2𝐿 periodic formula, then 𝐿 = 𝜋 ) (2 P.)

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑥) sin(𝑛𝑥)d𝑥

=
2
𝜋

∫ 𝜋

𝜋
2

(𝜋
2
− 𝑥

)
sin(𝑛𝑥)d𝑥

=
2
𝜋

𝜋

2

∫ 𝜋

𝜋
2

sin(𝑛𝑥)d𝑥 − 2
𝜋

∫ 𝜋

𝜋
2

𝑥 sin(𝑛𝑥)d𝑥
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The first term we can just integrate and for the second we use integration by
parts (note that integrating the sin here introduces a minus) (4 P.)

𝑏𝑛 =

[
− 1
𝑛
cos(𝑛𝑥)

]𝜋
𝜋
2

− 2
𝜋

[
−𝑥
𝑛
cos(𝑛𝑥)

]𝜋
𝜋
2

+ 2
𝜋

∫ 𝜋

𝜋
2

1 ·
(
− 1
𝑛
cos(𝑛𝑥)

)
d𝑥

= − 1
𝑛

(
cos(𝑛𝜋) − cos

𝑛𝜋

2

)
+ 2
𝑛𝜋

(
𝜋 cos(𝑛𝜋) − 𝜋

2𝑛
cos

𝑛𝜋

2

)
+ 2
𝜋

[
− 1
𝑛2

sin(𝑛𝑥)
]𝜋
𝜋
2

= − 1
𝑛
cos(𝑛𝜋) + 1

𝑛
cos

(𝑛𝜋
2
)
+ 2
𝑛
cos(𝑛𝜋) − 1

𝑛
cos

(𝑛𝜋
2
)
− 2
𝜋𝑛2

(
sin(𝑛𝜋) − sin

𝑛𝜋

2

)
=

1
𝑛
cos(𝑛𝜋) + 2

𝜋𝑛2
sin

𝑛𝜋

2

Now cos(𝑛𝜋) = (−1)𝑛 and sin 𝑛𝜋
2 = 0 if 𝑛 is even and sin (2𝑘+1)𝜋

2 = (−1)𝑘 so we
can simplify further (1 P.)

𝑔 ∼
∞∑︁
𝑛=1

(−1)𝑛
𝑛

sin(𝑛𝑥) + 2
𝜋

∞∑︁
𝑘=1

(−1)𝑘
(2𝑘 + 1)2 sin

(
(2𝑘 + 1)𝑥

)
c) The function 𝑔 is piecewise continuously differentiable and the limits of both

the function 𝑔 as well as the derivative 𝑔′ exist at every point. The left and right
limits of 𝑔 at 𝑥0 and 𝑥1 are They are (2 P.)

lim
𝑥→𝑥−

0
𝑔(𝑥) = −𝜋

2
, lim

𝑥→𝑥+0
𝑔(𝑥) = 𝜋

2
, lim

𝑥→𝑥−
1
𝑔(𝑥) = lim

𝑥→𝑥+1
𝑔(𝑥) = 0

since at 𝑥1 the function 𝑔 is even continuous. Hence the Fourier partial sum
converges to lim

𝑛→∞
𝑆𝑛 (𝑥0) =

1
2

(𝜋
2
− 𝜋

2

)
= 0 and lim

𝑛→∞
𝑆𝑛 (𝑥1) = 0. (2 P.)

The second limit at 𝑥0 can alternatively also be obtained, seeing that setting
𝑥 = 𝑥 : 0 in the series from the previous point, all terms vanish.
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Problem 6. (Fourier Transform, 8 points)

Let 𝜆, 𝐿 > 0 be given. Compute the Fourier Transform of 𝑓 (𝑥) =
{
cos(𝜆𝑥), for |𝑥 | ≤ 𝐿,

0 else.

Solution.

We can use Eulers identity on the cosine to obtain (2 P.)

𝑓 (𝜔) = 1
√
2𝜋

∫ ∞

−∞
𝑓 (𝑥)e−i𝜔𝑥 d𝑥

=
1

√
2𝜋

∫ 𝐿

−𝐿
cos(𝜆𝑥)e−i𝜔𝑥 d𝑥

=
1

√
2𝜋

∫ 𝐿

−𝐿

1
2

(
ei𝜆𝑥 + e−i𝜆𝑥

)
e−i𝜔𝑥 d𝑥

=
1

2
√
2𝜋

∫ 𝐿

−𝐿
ei𝑥 (𝜆−𝜔) + e−i𝑥 (𝜆+𝜔) d𝑥

For 𝜆 ≠ ±𝜔 we can compute the antiderivative of both terms (3 P.)

𝑓 (𝜔) = 1
2
√
2𝜋

( 1
i(𝜆 − 𝜔) e

i𝑥 (𝜆−𝜔) − 1
i(𝜆 + 𝜔) e

−i𝑥 (𝜆+𝜔)
���𝐿
−𝐿

)
=

1
√
2𝜋

( 1
2i(𝜆 − 𝜔)

(
ei𝐿(𝜆−𝜔) − e−i𝐿(𝜆−𝜔)

)
+ 1
2i(𝜆 + 𝜔)

(
ei𝐿(𝜆+𝜔) − e−i𝐿(𝜆+𝜔)

) )
where in the last line the second summand has a + upfront since we switched the order
of the terms in the inner difference (note that for 𝑥 = −𝐿 the minus sign vanishes
but this is the first term). Now both summands, especially already with the 2i in the
denominator look like sine functions, so we can rewrite this to (2 P.)

𝑓 (𝜔) = 1
√
2𝜋

( sin(𝐿(𝜆 − 𝜔))
𝜆 − 𝜔

+ sin(𝐿(𝜆 + 𝜔))
𝜆 + 𝜔

)
Extending both fractions by 𝐿 and using the definition of sinc(𝑥) = sin𝑥

𝑥
we can simplify

this to
𝑓 (𝜔) = 1

√
2𝜋

(
𝐿 sinc(𝐿(𝜆 − 𝜔)) + sinc(𝐿(𝜆 + 𝜔))

)
Since sinc(0) = 1 we also obtain the same solution for 𝜆 = ±𝜔 where either the first or
the second integral integrates to 2𝐿. (1 P.)
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Alternatively.
One can use that the cosine is odd and one of the trigonometric identities for products
of cosines (4 P.)

𝑓 (𝜔) = 1
√
2𝜋

∫ 𝐿

−𝐿
cos(𝜆𝑥)e−i𝜔𝑥 d𝑥 =

1
√
2𝜋

∫ 0

−𝐿
cos(𝜆𝑥)e−i𝜔𝑥 d𝑥 + 1

√
2𝜋

∫ 𝐿

0
cos(𝜆𝑥)e−i𝜔𝑥 d𝑥

=
2

√
2𝜋

∫ 𝐿

0
cos(𝜆𝑥)

(
ei𝜔𝑥 + e−i𝜔𝑥

)
d𝑥

=
1

√
2𝜋

∫ 𝐿

0
cos(𝜆𝑥) cos(𝜔𝑥) d𝑥

=
1

√
2𝜋

∫ 𝐿

0
cos

(
(𝜆 − 𝜔)𝑥

)
+ cos

(
(𝜆 + 𝜔)𝑥

)
d𝑥

Where again for 𝜆 ≠ ±𝜔 we can easily determine the stem functions (2 P.)

𝑓 (𝜔) = 1
√
2𝜋

( sin((𝜆 − 𝜔)𝑥
)

𝜆 − 𝜔
+
sin

(
(𝜆 + 𝜔)𝑥

)
𝜆 + 𝜔

���𝐿
0

)
which is the same as in the first approach. (2 P.)
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Problem 7. (Discrete Fourier Transform, 8 points)

For the signal f =
( 1
2 , 1,

1
2 , 0

)
∈ R4 we want to consider the Discrete Fourier Transform

f̂ = F4f .

a) What does the matrix F4 look like?

b) Compute f̂ .

c) Let 𝑐 ∈ R be given and assume that for another signal gwe obtain ĝ =
(
𝑔0, 𝑔1, 𝑔2, 𝑔3

)
=

F4g with 𝑔1 = 𝑔3 = 𝑐 and 𝑔0 = 𝑔2 = 0. What is the simplest function 𝑔(𝑥) that
could have been sampled?

Hint. Think of a bandlimited function or a trigonometric polynomial 𝑔(𝑥).

d) Is the inverse Fourier transform h = F −1
8 ĥ of ĥ =

(
0, 0, 0, 0, 0, 0, 1, 0

)
real-valued?

Solution.

a) By definition we have F𝑁 =

(
e−2𝜋 i 𝑗𝑘/𝑁

)𝑁−1

𝑗,𝑘=0
. (1 P.)

In this problem this leads to the Fourier matrix (1 P.)

F4 =
©­­­«
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

ª®®®¬
Depending on which definition is used, a factor

1
4
or

1
√
4
=

1
2
is also possible

b) We obtain (2 P.)

f̂ = F4f = F4

©­­­­«
𝑓0
𝑓1
𝑓2
𝑓3

ª®®®®¬
=

©­­­«
1
2 + 1 + 1

2 + 0
1
2 − i − 1

2 + 0i
1
2 − 1 + 1

2 − 0
1
2 + i − 1

2 − 0i

ª®®®¬ =
©­­­«
2
−i
0
i

ª®®®¬
or the two scaled versions mentioned at the end of a).
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c) If we obtain the Fourier transform ĝ =
(
0, 𝑐, 0, 𝑐

)
then the inverse Fourier trans-

form is g = 1
2
(
𝑐, 0,−𝑐, 0

)
. Which is a cosine. (2 P.)

Alternatively one can argue that with a Fourier shift these correspond to 𝑐0(𝑔) =
0 = 𝑐−2(𝑔) = 0 and 𝑐±1(𝑔) = 𝑐 and this corresponds to 𝑎1 = 2𝑐1 = 2𝑐 and all other
coefficients 𝑎0𝑎𝑛 = 0 (𝑛 ≠ 1) and 𝑏𝑛 = 0, 𝑛 = 1, 2, . . .. Hence g are the sampling
values 𝑔 𝑗 = 𝑔(𝑡 𝑗 ) at 𝑡 𝑗 = 𝜋 𝑗

2 , 𝑗 = 0, 1, 2, 3 of

𝑔(𝑥) = 2𝑐 cos(𝑥).

d) No, since with the Fourier shift this corresponds to 𝑐−4 = ℎ̂4, 𝑐−3 = ℎ̂5, ..., so with
𝑐−1 = ℎ̂7 = 1 but 𝑐1 = ℎ̂1 = 0 the condition that 𝑐𝑘 = 𝑐−𝑘 does not hold. (2 P.)

Alternatively one can argue that the inverse Fourier transform consists of the
seventh column of F −1

8 and that this column contains for example i which is then
an entry of h.
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Problem 8. (Heat equation, 12 points)

Consider the following partial differential equation: find 𝑢 (𝑥, 𝑡) that fulfils
𝜕𝑢

𝜕𝑡
− 𝜕2𝑢

𝜕𝑥2
= sin(3𝜋𝑥) , (2)

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0 , 𝑡 ≥ 0 (3)
𝑢 (𝑥, 0) = 0 , 0 ≤ 𝑥 ≤ 1 . (4)

which is an inhomogeneous heat equation.

a) Consider the functions 𝑢𝑛 (𝑥, 𝑡) = e−𝜔2
𝑛𝑡 sin(𝜔𝑛𝑥), with 𝑛 ∈ N and 𝜔𝑛 ∈ R. Deter-

mine the values 𝜔𝑛 such that 𝑢𝑛 (0, 𝑡) = 𝑢𝑛 (1, 𝑡) = 0, and show that

𝜕𝑢𝑛

𝜕𝑡
− 𝜕2𝑢𝑛

𝜕𝑥2
= 0 .

b) Show that 𝑣 (𝑥, 𝑡) = 1
9𝜋2 sin(3𝜋𝑥) satisfies the equation

𝜕𝑣

𝜕𝑡
− 𝜕2𝑣

𝜕𝑥2
= sin(3𝜋𝑥)

and the boundary conditions 𝑣 (0, 𝑡) = 𝑣 (1, 𝑡) = 0.

c) Using superposition, the general solution for Eq. (2) with boundary conditions
(3) can be written as

𝑢 (𝑥, 𝑡) = 1
9𝜋2 sin(3𝜋𝑥) +

∞∑︁
𝑛=1

𝐵𝑛e−𝜔𝑛
2𝑡 sin(𝜔𝑛𝑥) .

Determine the real coefficients 𝐵𝑛 so that the initial condition (4) is satisfied.

Solution.

a) We have (2 P.)

𝜕𝑢𝑛

𝜕𝑡
− 𝜕2𝑢𝑛

𝜕𝑥2
= −𝜔𝑛

2e−𝜔𝑛
2𝑡 sin(𝜔𝑛𝑥) − 𝜔𝑛 (−𝜔𝑛)e−𝜔𝑛

2𝑡 sin(𝜔𝑛𝑥) = 0 for all 𝜔𝑛 ∈ R .

The boundary condition at 𝑥 = 0 is already satisfied for all 𝜔𝑛 ∈ R (1 P.)
The condition at 𝑥 = 1 require sin(𝜔𝑛 · 1) = 0, since e−𝜔2

𝑛𝑡 ≠ 0, that is, (1 P.)

𝜔𝑛 = 𝑛𝜋 , with 𝑛 ∈ N .

We can thus write 𝑢𝑛 (𝑥, 𝑡) = e−(𝑛𝜋)2𝑡 sin(𝑛𝜋𝑥). (1 P.)
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b) We can verify by computing the derivatives (3 P.)

𝜕𝑣

𝜕𝑡
= 0 and

𝜕2𝑣

𝜕𝑥2
= − sin(3𝜋𝑥) , that

𝜕𝑣

𝜕𝑡
− 𝜕2𝑣

𝜕𝑥2
= 0 − (− sin(3𝜋𝑥)) = sin(3𝜋𝑥) .

At the boundary we obtain (2 P.)

𝑣 (0, 𝑡) = 1
9𝜋2 sin(0) = 0 and 𝑣 (1, 𝑡) = 1

9𝜋2 sin(3𝜋) = 0 .

c) The initial conditions require (1 P.)

0 = 𝑢 (𝑥, 0) = 1
9𝜋2 sin(3𝜋𝑥) +

∞∑︁
𝑛=1

𝐵𝑛 sin(𝑛𝜋𝑥) , that is,
∞∑︁
𝑛=1

𝐵𝑛 sin𝑛𝜋𝑥 = − 1
9𝜋2 sin(3𝜋𝑥) .

Hence, 𝐵𝑛 are the coefficients of a Fourier series. Since the right-hand side is one
of the summands (with a prefactor), we can directly read of the coefficients(1 P.)

𝐵𝑛 =

{
− 1

9𝜋2 if 𝑛 = 3
0 else.
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Problem 9. (Separation of Variables, 8 points)

Consider the fourth order PDE

𝜕2𝑢

𝜕𝑡2
+ 𝜕4𝑢

𝜕𝑥4
= 0, 𝑥 ∈ [0, 1], 𝑡 ≥ 0.

a) Use the Ansatz 𝑢 (𝑥, 𝑡) = 𝐹 (𝑥)𝐺 (𝑡) to transform the PDE into a system of ODEs.

b) Verify that for 𝛽 > 0, 𝐴, 𝐵 ∈ R all functions of the form

𝐹 (𝑥) = 𝐴 sin(𝛽𝑥) + 𝐵 cos(𝛽𝑥) (5)

satisfy the ODE for F in a).
We add the following (four) boundary conditions for 𝑡 > 0

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,
𝜕2

𝜕𝑥2
𝑢 (0, 𝑡) = 𝜕2

𝜕𝑥2
𝑢 (1, 𝑡) = 0.

For which 𝛽,𝐴, 𝐵 do the functions in (5) fulfil the boundary conditions?

c) How many initial conditions would you expect to be given to have a unique
solution for 𝐺?

Hint. Compare this PDE to what you know about the heat and wave equation
and their second ODE to solve.

d) Which other non-trivial function(s) 𝐹 also fulfil the ODE derived in a)? State an
example. You can ignore the boundary conditions.

Solution.

a) We use the Ansatz 𝑢 (𝑥, 𝑡) = 𝐹 (𝑥)𝐺 (𝑡) to obtain

𝜕2

𝜕𝑡2
𝑢 (𝑥, 𝑡) = 𝐹 (𝑥)𝐺′′(𝑡) = −𝐹 (4) (𝑥)𝐺 (𝑡) = − 𝜕4

𝜕𝑥4
𝑢 (𝑥, 𝑡)

which we rearrange to (1 P.)

𝐺′′(𝑡)
𝐺 (𝑡) = −𝐹

(4) (𝑥)
𝐹 (𝑥) = −𝑘
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where 𝑘 is a constant. We obtain the two ODEs (1 P.)

𝐹 (4) (𝑥) − 𝑘𝐹 (𝑥) = 0
𝐺′′(𝑡) + 𝑘𝐺 (𝑡) = 0

b) In the Ansatz from a) the boundary conditions yield that a solution to the ODE
w.r.t. 𝐹 has to fulfil

𝑢 (0, 𝑡) = 𝐹 (0)𝐺 (𝑡) = 𝐹 (1)𝐺 (𝑡) = 𝑢 (1, 𝑡) = 0

for all 𝑡 > 0. Hence 𝐹 (0) = 𝐹 (1) = 0.
Similarly the other boundary conditions yield that 𝐹 ′′(0) = 𝐹 ′′(1) = 0. (1 P.)
We first verify that the given form fulfils the ODE. We have

𝐹 ′(𝑥) = 𝐴𝛽 cos(𝛽𝑥) − 𝐵𝛽 sin(𝛽𝑥)
𝐹 ′′(𝑥) = −𝐴𝛽2 sin(𝛽𝑥) − 𝐵𝛽2 cos(𝛽𝑥)
𝐹 (3) (𝑥) = −𝐴𝛽3 cos(𝛽𝑥) + 𝐵𝛽3 sin(𝛽𝑥)
𝐹 (4) (𝑥) = 𝐴𝛽4 cos(𝛽𝑥) + 𝐵𝛽4 cos(𝛽𝑥) = 𝛽4𝐹 (𝑥)

Hence it fulfils the ODE for 𝐹 . (1 P.)
For the boundary conditions, we obtain

0 = 𝐹 (0) = 𝐴 · 0 + 𝐵 · 1 = 0 ⇒ 𝐵 = 0

So we can continue with just functions of the form 𝐹 (𝑥) = 𝐴 sin(𝛽𝑥). From the
second boundary condition we obtain (1 P.)

0 = 𝐹 (1) = 𝐴 sin(𝛽) ⇒ 𝛽 = 𝑛𝜋.

The third and fourth boundary conditions read (1 P.)

0 = 𝐹 ′′(0) = −𝐴𝛽2 sin(0) and 0 = 𝐹 (1) = −𝐴𝛽2 sin(𝛽)

The first is true for any 𝛽 , the second holds for the already found 𝛽 = 𝑛𝜋 , 𝛽 ∈ N.

c) We need two initial conditions. (1 P.)
An example would be ok as well, we usually need something like

𝑢 (𝑥, 0) = 0
𝜕

𝜕𝑡
𝑢 (𝑥, 0) = 0

to get a unique solution (for each 𝛽 = 𝑛𝜋 , 𝑛 ∈ N or in other words 𝑘 = (𝑛𝜋)4
from b)) in the ODE for 𝐺 .
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d) For example 𝐶e±𝛽𝑥 , 𝛽 > 0 fulfils the ODE with 𝑘 = 𝛽4 as well, or phrased
differently, 𝐷 sinh(𝛽𝑥) and 𝐸 cosh(𝛽𝑥) do. (1 P.)
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Formula Sheet. TMA4125 Matematikk 4N, Vår 2022.
Fourier Transform. The Fourier Transform 𝑓 = F (𝑓 ) and its inverse 𝑓 = F −1(𝑓 ) are

𝑓 (𝜔) = F (𝑓 ) (𝜔) = 1
√
2𝜋

∫ ∞

−∞
𝑓 (𝑥)e−i𝜔𝑥 d𝑥 and 𝑓 (𝑥) = F −1(𝑓 ) (𝑥) = 1

√
2𝜋

∫ ∞

−∞
𝑓 (𝜔)ei𝜔𝑥 d𝜔

Laplace Transform. The Laplace transform 𝐹 (𝑠) of 𝑓 (𝑡), 𝑡 ≥ 0, reads

𝐹 (𝑠) =
∫ ∞

0
e−𝑠𝑡 𝑓 (𝑡) d𝑡

List of Fourier Transforms.

𝑓 (𝑥) 𝑓 (𝜔)

e−𝑎𝑥2
1

√
2𝑎

e−
𝜔2
4𝑎

e−𝑎 |𝑥 |
√︂

2
𝜋

𝑎

𝜔2 + 𝑎2

1
𝑥2 + 𝑎2

for 𝑎 > 0
√︂

𝜋

2
e−𝑎 |𝜔 |

𝑎{
1 for |𝑥 | < 𝑎

0 otherwise.

√︂
2
𝜋

sin(𝜔𝑎)
𝜔

List of Laplace Transforms.

𝑓 (𝑡) 𝐹 (𝑠)

cos(𝜔𝑡) 𝑠

𝑠2 + 𝜔2

sin(𝜔𝑡) 𝜔

𝑠2 + 𝜔2

cosh(𝜔𝑡) 𝑠

𝑠2 − 𝜔2

sinh(𝜔𝑡) 𝜔

𝑠2 − 𝜔2

𝑡𝑛
Γ(𝑛 + 1)
𝑠𝑛+1

, see Note(𝑎)

e𝑎𝑡
1

𝑠 − 𝑎

𝑓 (𝑡 − 𝑎)𝑢 (𝑡 − 𝑎) e−𝑠𝑎𝐹 (𝑠)

𝛿 (𝑡 − 𝑎) e−𝑠𝑎
(𝑎) where for 𝑛 ∈ N we have Γ(𝑛 + 1) = 𝑛!

Trigonometric identities.

• cos(𝛼 + 𝛽) = cos𝛼 cos 𝛽 − sin𝛼 sin 𝛽

• sin(𝛼 + 𝛽) = sin𝛼 cos 𝛽 + cos𝛼 sin 𝛽

• sin𝛼 cos 𝛽 = 1
2
(
sin(𝛼 − 𝛽) + sin(𝛼 + 𝛽)

)
• cos(2𝛼) = 2 cos2(𝛼) − 1 = 1 − 2 sin2(𝛼)

• 2 sin𝛼 cos 𝛽 = sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)
• 2 cos𝛼 sin 𝛽 = sin(𝛼 + 𝛽) − sin(𝛼 − 𝛽)
• 2 cos𝛼 cos 𝛽 = cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽)
• 2 sin𝛼 sin 𝛽 = cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)

We also discussed the sinus cardinalis sinc(𝑥) = sin𝑥
𝑥

.

Fourier Series. For a 2𝜋-periodic function 𝑓 we can write

𝑓 ∼
∞∑︁

𝑘=−∞
𝑐𝑘ei𝑘𝑥 =

𝑎0

2
+

∞∑︁
𝑛=1

𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)

with coefficients

𝑎𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) cos(𝑛𝑥) d𝑥, 𝑛 = 0, 1, 2, . . . , 𝑏𝑛 =

1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) sin(𝑛𝑥) d𝑥, 𝑛 = 1, 2, . . . ,

𝑐𝑘 =
1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)e−i𝑘𝑥 d𝑥, 𝑘 ∈ Z.


