- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4125 Matematikk 4N

Solution

Academic contact during examination:
Phone:

Examination date: May 10, 2022
Examination time (from-to): 09:00-13:00

Permitted examination support material: C.

One sheet A4 paper, approved by the department (yellow sheet, "gul ark") with own handwritten notes.
Certain simple calculators.

Other information:

- All answers have to be justified, and they should include enough details in order to see how they have been obtained.
- Good Luck! | Lykke til! | Viel Glück!

Language: English

Number of pages: 22
Number of pages enclosed: 0
Checked by:

```
Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig a 2-sidig }
sort/hvit \otimes farger \square
skal ha flervalgskjema 口
```

In the exam one could obtain 100 points and the exam was graded using the usual grading scheme, i.e.

A	B	C	D	E	F
$100-89$	$88-77$	$76-65$	$64-53$	5^{2-41}	40 and less

And the grades are distributed as follows, where we split those that handed in an empty exam

A	B	C	D	E	F	empty	\sum
6	16	50	55	71	72	14	284
2.1%	5.6%	17.6%	19.4%	25%	25.4%	4.9%	

Problem 1. (Polynomial interpolation, 8 points)
Find the polynomial $p(x)$ of lowest possible degree that interpolates the following values.

x_{i}	-2	-1	0	1	2
y_{i}	$\frac{1}{2}$	5	$\frac{5}{2}$	-1	$\frac{1}{2}$

Solution.

A relatively short solution is the following: Since both x_{1} and x_{5} have the value $\frac{1}{2}$ we can write

$$
p(x)=q(x)+\frac{1}{2} \quad \text { or } q(x)=p(x)-\frac{1}{2}
$$

such that $q(-2)=q(2)=0$. This means we can write

$$
\begin{equation*}
q(x)=(x-2)(x+2) r(x)=\left(x^{2}-4\right) r(x) \tag{1P.}
\end{equation*}
$$

Plugging the remaining points into this, we obtain

$$
\begin{align*}
5 & =p(-1)=q(-1)+\frac{1}{2}=\left((-1)^{2}-4\right) r(-1)+\frac{1}{2}=-3 r(-1)+\frac{1}{2} \tag{3P.}\\
& \Rightarrow-3 r(-1)=\frac{9}{2} \Rightarrow r(-1)=-\frac{3}{2} \\
\frac{5}{2} & =p(0)=q(0)+\frac{1}{2}=\left(0^{2}-4\right) r(-1)-\frac{1}{2}=-4 r(0)+\frac{1}{2} \\
& \Rightarrow-4 r(0)=2 \Rightarrow r(0)=-\frac{1}{2} \\
-1 & =p(1)=q(1)+\frac{1}{2}=\left(1^{2}-4\right) r(1)+\frac{1}{2}=-3 r(1)+\frac{1}{2} \\
& \Rightarrow-3 r(1)=-\frac{3}{2} \Rightarrow r(1)=\frac{1}{2}
\end{align*}
$$

And we can easily see that $r(x)=x-\frac{1}{2}$. Hence we obtain $q(x)=\left(x^{2}-4\right)\left(x-\frac{1}{2}\right)$ and therefore

$$
\begin{equation*}
p(x)=q(x)+\frac{1}{2}=x^{3}-\frac{1}{2} x^{2}-4 x+\frac{5}{2} \tag{3P.}
\end{equation*}
$$

Newton Scheme.

For the newton Scheme we obtain the polynomials

$$
\begin{align*}
& w_{0}(x)=1 \tag{3P.}\\
& w_{1}(x)=(x+2) \\
& w_{2}(x)=(x+2)(x+1)=x^{2}+3 x+2 \\
& w_{3}(x)=(x+2)(x+1) x=x^{3}+3 x^{2}+2 x \\
& w_{4}(x)=(x+2)(x+1) x(x-1)=x^{4}+3 x^{3}+2 x^{2}-x^{3}-3 x^{2}-2 x=x^{4}+2 x^{3}-x^{2}-2 x
\end{align*}
$$

and the Newton scheme looks as follows. Note since we have equidistant nodes, the denominator is just always equal to the number of nodes involved

Hence we obtain

$$
\begin{aligned}
p(x) & =\frac{1}{2} w_{0}+\frac{9}{2} w_{1}(x)-\frac{7}{2} w_{2}(x)+1 w_{3}(x)-0 w_{4}(x) \\
& =\frac{1}{2}+\frac{9}{2}(x+2)-\frac{7}{2}\left(x^{2}+3 x+2\right)+\left(x^{3}+3 x^{2}+2 x\right) \\
& =\frac{1}{2}+\frac{9}{2} x+9-\frac{7}{2} x^{2}-\frac{21}{2} x-7+x^{3}+3 x^{2}+2 x \\
& =x^{3}-\frac{1}{2} x^{2}-4 x+\frac{5}{2} .
\end{aligned}
$$

Lagrange Interpolation.

We can alternatively use Lagrange interpolation: $\ell_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n-1} \frac{x-x_{j}}{x_{i}-x_{j}}$. We obtain (5 P.)
$\ell_{0}(x)=\frac{(x+1) x(x-1)(x-2)}{(-2+1)(-2)(-2-1)(-2-2)}=\frac{\left(x^{2}-1\right) x(x-2)}{(-1)(-2)(-3)(-4)}=\frac{1}{24}\left(x^{4}-2 x^{3}-x^{2}+2 x\right)$
$\ell_{1}(x)=\frac{(x+2) x(x-1)(x-2)}{1(-1)(-2)(-3)}=\frac{\left(x^{2}-4\right) x(x-1)}{-6}=-\frac{1}{6}\left(x^{4}-x^{3}-4 x^{2}+4 x\right)$
$f_{2}(x)=\frac{(x+2)(x+1)(x-2)(x-1)}{2 \cdot 1(-1)(-2)}=\frac{\left(x^{2}-4\right)\left(x^{2}-1\right)}{4}=\frac{1}{4}\left(x^{4}-5 x^{2}+4\right)$
$\ell_{3}(x)=\frac{(x+2)(x+1) x(x-2)}{-6}=-\frac{1}{6}\left(x^{4}+x^{3}-4 x^{2}-4 x\right)$
$\ell_{4}(x)=\frac{(x+2)(x+1) x(x-1)}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{1}{24}\left(x^{4}+2 x^{3}-x^{2}-2 x\right)$
So we obtain

$$
\begin{align*}
p(x)= & \frac{1}{2} \ell_{0}(x)+5 \ell_{1}(x)+\frac{5}{2} \ell_{2}(x)-\ell_{3}(x)+\frac{1}{2} \ell_{4}(x) \tag{3P.}\\
= & \left(\frac{1}{48}-\frac{5}{6}+\frac{5}{8}+\frac{1}{6}+\frac{1}{48}\right) x^{4}+\left(-\frac{1}{24}+\frac{5}{6}-\frac{25}{8}+\frac{1}{6}+\frac{1}{24}\right) x^{3}+\left(-\frac{1}{48}+\frac{10}{3}-\frac{25}{8}-\frac{2}{3}-\frac{1}{48}\right) x^{2} \\
& \quad+\left(\frac{1}{24}-\frac{10}{3}+\frac{2}{3}-\frac{1}{24}\right) x-\frac{5}{2} \\
= & x^{3}-\frac{1}{2} x^{2}-4 x+\frac{5}{2}
\end{align*}
$$

Problem 2. (Fixed-point and Newton iterations, 16 points)
In pipeline design for oil transport, pressure losses must be carefully estimated. They are directly proportional to a positive friction factor k, whose inverse square root $x:=1 / \sqrt{k}$ is given by a non-linear equation. For a turbulent flow, the equation to find x is

$$
\begin{equation*}
x=g(x), \quad \text { with } \quad g(x):=-1.93 \ln (x)+15.9 \tag{1}
\end{equation*}
$$

in which $\ln (x)$ denotes the natural logarithm, that is, the logarithm whose basis is Euler's number: $\mathrm{e} \approx 2.7183$.
a) Compute $g^{\prime}(x)$.

Use the result to determine whether $g(x), x>0$, is an increasing, decreasing or a non-monotonic function.
b) Calculate the maximum and minimum values of $g(x)$ in the interval $x \in\left[\mathrm{e}, \mathrm{e}^{3}\right]$.
c) Show that $\left|g^{\prime}(x)\right|<1$ for $x \in\left[\mathrm{e}, \mathrm{e}^{3}\right]$.
d) Starting from an initial value $x^{(0)}=\mathrm{e}^{2}$, does the fix point iteration converge? Explain your answer.
e) For $x^{(0)}=\mathrm{e}^{2}$, perform the first fixed-point iteration for the solution of Equation 1 .
f) For $x^{(0)}=\mathrm{e}^{2}$, perform the first Newton iteration for the solution of Equation 1 .

Solution.

a) We differentiate $g(x)$ to get

$$
\begin{equation*}
g^{\prime}(x)=-\frac{1.93}{x}, \tag{1P.}
\end{equation*}
$$

which is always negative for $x>0$. Therefore, $g(x)$ is a decreasing function.(1 P.)
b) Since $g(x)$ is decreasing, for $x \in\left[\mathrm{e}, \mathrm{e}^{3}\right]$ we have

$$
\begin{equation*}
g\left(\mathrm{e}^{3}\right) \leq g(x) \leq g(\mathrm{e}), \quad \text { that is, } \quad g\left(\left[\mathrm{e}, \mathrm{e}^{3}\right]\right)=[10.11,13.97] \subset\left(\mathrm{e}, \mathrm{e}^{3}\right) . \tag{1P.}
\end{equation*}
$$

c) Since $g^{\prime}(x)$ is an increasing function, we have

$$
\begin{equation*}
g^{\prime}(\mathrm{e}) \leq g^{\prime}(x) \leq g^{\prime}\left(\mathrm{e}^{3}\right), \quad \text { that is, } \quad-\frac{1.93}{\mathrm{e}} \leq g^{\prime}(x) \leq-\frac{1.93}{\mathrm{e}^{3}} . \tag{1P.}
\end{equation*}
$$

Hence, we have $\left|g^{\prime}(x)\right| \leq 1.93 \mathrm{e}^{-1}<1$ for all $x \in\left(\mathrm{e}, \mathrm{e}^{3}\right)$.
Alternatively. For $x>2$ we have $-1<g^{\prime}(x)<0$ and hence since $2<\mathrm{e}<\mathrm{e}^{3}$ the statement holds.
d) Since all three conditions
(i) $g^{\prime}(x) \in C^{0}\left[\mathrm{e}, \mathrm{e}^{3}\right]$,
(ii) $g\left(\left[\mathrm{e}, \mathrm{e}^{3}\right]\right) \subset\left[\mathrm{e}, \mathrm{e}^{3}\right]$,
(iii) $\left|g^{\prime}(x)\right|<1$ for all $x \in\left[\mathrm{e}, \mathrm{e}^{3}\right]$
are fulfilled, the fixed-point iteration converges for $x^{(0)} \in\left[\mathrm{e}, \mathrm{e}^{3}\right]$.
e) The first iteration is given by

$$
x^{(1)}=-1.93 \ln \left(x^{(0)}\right)+15.9=12.04 .
$$

f) To compute a Newton iteration, we first rewrite the non-linear equation as (2 P.) $f(x)=x-g(x)=x+1.93 \ln (x)-15.9, \quad$ so that $\quad f^{\prime}(x)=1-g^{\prime}(x)=1+\frac{1.93}{x}$. The Newton iteration then reads

$$
\begin{align*}
& x^{(1)}=x^{(0)}-\frac{f\left(x^{(0)}\right)}{f^{\prime}\left(x^{(0)}\right)}=x^{(0)}-\frac{x^{(0)}+1.93 \ln \left(x^{(0)}\right)-15.9}{1+1.93 / x^{(0)}}=\frac{15.9+1.93\left[1-\ln \left(x^{(0)}\right)\right]}{1+1.93 / x^{(0)}} . \\
& \text { For } x^{(0)}=\mathrm{e}^{2} \text {, we get } \tag{1P.}
\end{align*}
$$

$$
x^{(1)}=\frac{13.97}{1+1.93 \mathrm{e}^{-2}} \approx 11.0768
$$

Another possible reformulation is $f(x)=g(x)-x$ then $x^{(1)}=-1.53029$ which is also a correct solution.

Problem 3. (Ralston's method, 14 points)
For the ordinary differential equation

$$
y^{\prime}(t)=-6 y(t), \quad \text { with } \quad y(0)=1
$$

consider Ralston's method given by the following Butcher tableau:

0	0	0
$2 / 3$	$2 / 3$	0
	$1 / 4$	$3 / 4$

Using the tableau and expanding the stage derivatives k_{i}, we can write the solution y_{n+1} in terms of the previous one, y_{n}, and of the time-step size $h>0$. More precisely:

$$
y_{n+1}=R(h) y_{n}, \quad \text { so that } \quad y_{n}=[R(h)]^{n} y(0),
$$

in which $R(h)$ is a second-degree polynomial.
a) How many stages does this Runge-Kutta method have?
b) Determine the polynomial $R(h)$.
c) Using the expression obtained for $R(h)$, determine for what range of step sizes this algorithm is stable.

Solution.

a) The tableau shows that the method has 2 stages.
b) From the tableau and the ODE, we can write

$$
\begin{align*}
& k_{1}=f\left(t_{n}+0 \cdot h, y_{n}+0 \cdot h k_{1}+0 \cdot h k_{2}\right)=f\left(t_{n}, y_{n}\right)=-6 y_{n}, \\
& k_{2}=f\left(t_{n}+2 h / 3, y_{n}+2 / 3 \cdot h k_{1}+0 \cdot h k_{2}\right)=f\left(t_{n}+2 h / 3, y_{n}-4 h y_{n}\right)=-6\left(y_{n}-4 h y_{n}\right), \\
& y_{n+1}=y_{n}+\frac{h}{4}\left(k_{1}+3 k_{2}\right)=y_{n}-6 h y_{n}+18 h^{2} y_{n}=\left(1-6 h+18 h^{2}\right) y_{n} . \\
& \text { Hence, } R(h)=1-6 h+18 h^{2} . \tag{1P.}
\end{align*}
$$

c) Stability means that y_{n} does not tend to infinity for $n \rightarrow \infty$.

Since $y_{n}=[R(h)]^{n} y(0)$ and

$$
\begin{equation*}
R(h)=1-6 h+18 h^{2}=\frac{(6 h-1)^{2}+1}{2}>0 \quad \text { for all } h \in \mathbb{R} \tag{2P.}
\end{equation*}
$$

all we need to guarantee is $R(h) \leq 1$, that is,

$$
1-6 h+18 h^{2} \leq 1 \Leftrightarrow-6 h+18 h^{2} \leq 0 \Leftrightarrow 6 h(3 h-1) \leq 0
$$

Since $h>0$ we can divide by $6 h$ to obtain $3 h-1 \leq 0$, which yields $h \leq \frac{1}{3} \quad$ (1 P.) For any h larger than that, the solution will diverge. Hence: $h_{\max }=1 / 3$, or (1 P.)

$$
0<h \leq \frac{1}{3} .
$$

Problem 4. (Laplace transform, 12 points)
a) Compute the Laplace transform of

$$
f(t)=t^{2} \mathrm{e}^{-4 t}
$$

b) For a given constant $a \in \mathbb{R}$, show that the inverse Laplace transform of

$$
Y(s)=\frac{s+a}{(s-2)^{2}}
$$

is

$$
y(t)=\mathcal{L}^{-1}(Y)(t)=\mathrm{e}^{2 t}[1+(a+2) t] .
$$

c) Solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y^{\prime}(0)=y(0)=1,
$$

using the Laplace transform.

Solution.

a) By definition we have

$$
F(s)=\int_{0}^{\infty} t^{2} \mathrm{e}^{-4 t} \mathrm{e}^{-s t} \mathrm{~d} t=\int_{0}^{\infty} t^{2} \mathrm{e}^{-(s+4) t} \mathrm{~d} t
$$

Hence $F(s)=\mathcal{L}\left(t^{2}\right)(s+4)$ and we can look up that $\mathcal{L}\left(t^{2}\right)=\frac{2}{s^{3}}$ to obtain (2 P.)

$$
F(s)=\frac{2}{(s+4)^{3}} .
$$

Alternatively. One can also solve the integral by applying integration by parts twice. There are also several other approaches to compute this.
b) We can decompose $Y(s)$ as

$$
\begin{equation*}
Y(s)=\frac{s+a}{(s-2)^{2}}=\frac{s-2}{(s-2)^{2}}+\frac{2+a}{(s-2)^{2}}=\frac{1}{(s-2)}+\frac{2+a}{(s-2)^{2}} . \tag{2P.}
\end{equation*}
$$

Using the shift theorem we obtain

$$
y(t)=\mathcal{L}^{-1}\left[(s-2)^{-1}\right](t)+(2+a) \mathcal{L}^{-1}\left[(s-2)^{-2}\right](t)=\mathrm{e}^{2 t}[1+(a+2) t] .
$$

c) Applying the Laplace transform to the ODE, with the boundary conditions we get

$$
0=\mathcal{L}\left(y^{\prime \prime}-4 y^{\prime}+4 y\right)=\left(s^{2} Y(s)-1 \cdot s-1\right)-4(s Y(s)-1)+4 Y(s),
$$

so that
(1 P.)

$$
Y(s)=\frac{s-3}{(s-2)^{2}}
$$

Now we can use what was done in b), with $a=-3$, to compute the inverse transform

$$
y(t)=\mathcal{L}^{-1}(Y)(t)=\mathrm{e}^{2 t}[1+(-3+2)]=\mathrm{e}^{2 t}(1-t) .
$$

Problem 5. (Fourier Series, 14 points)
Let g be the periodic continuation of the odd extension $f_{0}:[-\pi, \pi) \rightarrow \mathbb{R}$ for

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { for } 0 \leq x<\frac{\pi}{2}, \\
\frac{\pi}{2}-x & \text { for } \frac{\pi}{2} \leq x \leq \pi,
\end{array} \quad x \in[0, \pi] .\right.
$$

a) Sketch the function g on an interval of length of at least 2 periods.
b) Compute the real Fourier series of g. Simplify the result.
c) We denote the Fourier partial sum of the Fourier series from b) by S_{n}.

Let $x_{0}=\pi$ and $x_{1}=-\frac{\pi}{2}$. What values do the Fourier partial sums converge to, i. e. what are the limits $\lim _{n \rightarrow \infty} S_{n}\left(x_{0}\right)$ and $\lim _{n \rightarrow \infty} S_{n}\left(x_{1}\right)$?

Solution.

a) The sketch looks for example like

where the important points are at $\frac{k \pi}{2}, k=-4, \ldots, 4$.
b) The Fourier coefficients are $a_{0}=a_{n}=0$ for $n \in \mathbb{N}$, since g is odd.

For the b_{n} we can use the formula for odd functions and compute (checking for example the $2 L$ periodic formula, then $L=\pi$)

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) \mathrm{d} x \\
& =\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi}\left(\frac{\pi}{2}-x\right) \sin (n x) \mathrm{d} x \\
& =\frac{2}{\pi} \frac{\pi}{2} \int_{\frac{\pi}{2}}^{\pi} \sin (n x) \mathrm{d} x-\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} x \sin (n x) \mathrm{d} x
\end{aligned}
$$

The first term we can just integrate and for the second we use integration by parts (note that integrating the sin here introduces a minus)

$$
\begin{aligned}
b_{n} & =\left[-\frac{1}{n} \cos (n x)\right]_{\frac{\pi}{2}}^{\pi}-\frac{2}{\pi}\left[-\frac{x}{n} \cos (n x)\right]_{\frac{\pi}{2}}^{\pi}+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} 1 \cdot\left(-\frac{1}{n} \cos (n x)\right) \mathrm{d} x \\
& =-\frac{1}{n}\left(\cos (n \pi)-\cos \frac{n \pi}{2}\right)+\frac{2}{n \pi}\left(\pi \cos (n \pi)-\frac{\pi}{2 n} \cos \frac{n \pi}{2}\right)+\frac{2}{\pi}\left[-\frac{1}{n^{2}} \sin (n x)\right]_{\frac{\pi}{2}}^{\pi} \\
& =-\frac{1}{n} \cos (n \pi)+\frac{1}{n} \cos \left(\frac{n \pi}{2}\right)+\frac{2}{n} \cos (n \pi)-\frac{1}{n} \cos \left(\frac{n \pi}{2}\right)-\frac{2}{\pi n^{2}}\left(\sin (n \pi)-\sin \frac{n \pi}{2}\right) \\
& =\frac{1}{n} \cos (n \pi)+\frac{2}{\pi n^{2}} \sin \frac{n \pi}{2}
\end{aligned}
$$

Now $\cos (n \pi)=(-1)^{n}$ and $\sin \frac{n \pi}{2}=0$ if n is even and $\sin \frac{(2 k+1) \pi}{2}=(-1)^{k}$ so we can simplify further

$$
\begin{equation*}
g \sim \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin (n x)+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \sin ((2 k+1) x) \tag{1P.}
\end{equation*}
$$

c) The function g is piecewise continuously differentiable and the limits of both the function g as well as the derivative g^{\prime} exist at every point. The left and right limits of g at x_{0} and x_{1} are They are

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}^{-}} g(x)=-\frac{\pi}{2}, \quad \lim _{x \rightarrow x_{0}^{+}} g(x)=\frac{\pi}{2}, \quad \lim _{x \rightarrow x_{1}^{-}} g(x)=\lim _{x \rightarrow x_{1}^{+}} g(x)=0 \tag{2P.}
\end{equation*}
$$

since at x_{1} the function g is even continuous. Hence the Fourier partial sum converges to $\lim _{n \rightarrow \infty} S_{n}\left(x_{0}\right)=\frac{1}{2}\left(\frac{\pi}{2}-\frac{\pi}{2}\right)=0$ and $\lim _{n \rightarrow \infty} S_{n}\left(x_{1}\right)=0$.
The second limit at x_{0} can alternatively also be obtained, seeing that setting $x=x: 0$ in the series from the previous point, all terms vanish.

Problem 6. (Fourier Transform, 8 points)
Let $\lambda, L>0$ be given. Compute the Fourier Transform of $f(x)= \begin{cases}\cos (\lambda x), & \text { for }|x| \leq L, \\ 0 & \text { else. }\end{cases}$

Solution.

We can use Eulers identity on the cosine to obtain

$$
\begin{align*}
\hat{f}(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \tag{2P.}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-L}^{L} \cos (\lambda x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-L}^{L} \frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \lambda x}+\mathrm{e}^{-\mathrm{i} \lambda x}\right) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \\
& =\frac{1}{2 \sqrt{2 \pi}} \int_{-L}^{L} \mathrm{e}^{\mathrm{i} x(\lambda-\omega)}+\mathrm{e}^{-\mathrm{i} x(\lambda+\omega)} \mathrm{d} x
\end{align*}
$$

For $\lambda \neq \pm \omega$ we can compute the antiderivative of both terms

$$
\begin{align*}
\hat{f}(\omega) & =\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{\mathrm{i}(\lambda-\omega)} \mathrm{e}^{\mathrm{i} x(\lambda-\omega)}-\left.\frac{1}{\mathrm{i}(\lambda+\omega)} \mathrm{e}^{-\mathrm{i} x(\lambda+\omega)}\right|_{-L} ^{L}\right) \tag{3P.}\\
& =\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{2 \mathrm{i}(\lambda-\omega)}\left(\mathrm{e}^{\mathrm{i} L(\lambda-\omega)}-\mathrm{e}^{-\mathrm{i} L(\lambda-\omega)}\right)+\frac{1}{2 \mathrm{i}(\lambda+\omega)}\left(\mathrm{e}^{\mathrm{i} L(\lambda+\omega)}-\mathrm{e}^{-\mathrm{i} L(\lambda+\omega)}\right)\right)
\end{align*}
$$

where in the last line the second summand has a + upfront since we switched the order of the terms in the inner difference (note that for $x=-L$ the minus sign vanishes but this is the first term). Now both summands, especially already with the 2 i in the denominator look like sine functions, so we can rewrite this to

$$
\begin{equation*}
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}}\left(\frac{\sin (L(\lambda-\omega))}{\lambda-\omega}+\frac{\sin (L(\lambda+\omega))}{\lambda+\omega}\right) \tag{2P.}
\end{equation*}
$$

Extending both fractions by L and using the definition of $\operatorname{sinc}(x)=\frac{\sin x}{x}$ we can simplify this to

$$
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}}(L \operatorname{sinc}(L(\lambda-\omega))+\operatorname{sinc}(L(\lambda+\omega)))
$$

Since $\operatorname{sinc}(0)=1$ we also obtain the same solution for $\lambda= \pm \omega$ where either the first or the second integral integrates to $2 L$.

Alternatively.
One can use that the cosine is odd and one of the trigonometric identities for products of cosines
(4 P.)

$$
\begin{aligned}
\hat{f}(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-L}^{L} \cos (\lambda x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi}} \int_{-L}^{0} \cos (\lambda x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x+\frac{1}{\sqrt{2 \pi}} \int_{0}^{L} \cos (\lambda x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{L} \cos (\lambda x)\left(\mathrm{e}^{\mathrm{i} \omega x}+\mathrm{e}^{-\mathrm{i} \omega x}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{L} \cos (\lambda x) \cos (\omega x) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{L} \cos ((\lambda-\omega) x)+\cos ((\lambda+\omega) x) \mathrm{d} x
\end{aligned}
$$

Where again for $\lambda \neq \pm \omega$ we can easily determine the stem functions

$$
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}}\left(\frac{\sin ((\lambda-\omega) x)}{\lambda-\omega}+\left.\frac{\sin ((\lambda+\omega) x)}{\lambda+\omega}\right|_{0} ^{L}\right)
$$

which is the same as in the first approach.

Problem 7. (Discrete Fourier Transform, 8 points)
For the signal $\mathbf{f}=\left(\frac{1}{2}, 1, \frac{1}{2}, 0\right) \in \mathbb{R}^{4}$ we want to consider the Discrete Fourier Transform $\hat{\mathbf{f}}=\mathcal{F}_{4} \mathrm{f}$.
a) What does the matrix \mathcal{F}_{4} look like?
b) Compute $\hat{\mathbf{f}}$.
c) Let $c \in \mathbb{R}$ be given and assume that for another signal \mathbf{g} we obtain $\hat{\mathbf{g}}=\left(\hat{g}_{0}, \hat{g}_{1}, \hat{g}_{2}, \hat{g}_{3}\right)=$ $\mathcal{F}_{4} \mathrm{~g}$ with $\hat{g}_{1}=\hat{g}_{3}=c$ and $\hat{g}_{0}=\hat{g}_{2}=0$. What is the simplest function $g(x)$ that could have been sampled?

Hint. Think of a bandlimited function or a trigonometric polynomial $g(x)$.
d) Is the inverse Fourier transform $\mathbf{h}=\mathcal{F}_{8}^{-1} \hat{\mathbf{h}}$ of $\hat{\mathbf{h}}=(0,0,0,0,0,0,1,0)$ real-valued?

Solution.

a) By definition we have $\mathcal{F}_{N}=\left(\mathrm{e}^{-2 \pi i j k / N}\right)_{j, k=0}^{N-1}$.

In this problem this leads to the Fourier matrix

$$
\mathcal{F}_{4}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{1P.}\\
1 & -\mathrm{i} & -1 & \mathrm{i} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{i} & -1 & -\mathrm{i}
\end{array}\right)
$$

Depending on which definition is used, a factor $\frac{1}{4}$ or $\frac{1}{\sqrt{4}}=\frac{1}{2}$ is also possible
b) We obtain
(2 P.)

$$
\hat{\mathbf{f}}=\mathcal{F}_{4} \mathbf{f}=\mathcal{F}_{4}\left(\begin{array}{l}
\hat{f}_{0} \\
\hat{f}_{1} \\
\hat{f}_{2} \\
\hat{f}_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2}+1+\frac{1}{2}+0 \\
\frac{1}{2}-\mathrm{i}-\frac{1}{2}+0 \mathrm{i} \\
\frac{1}{2}-1+\frac{1}{2}-0 \\
\frac{1}{2}+\mathrm{i}-\frac{1}{2}-0 \mathrm{i}
\end{array}\right)=\left(\begin{array}{c}
2 \\
-\mathrm{i} \\
0 \\
\mathrm{i}
\end{array}\right)
$$

or the two scaled versions mentioned at the end of a).
c) If we obtain the Fourier transform $\hat{\mathbf{g}}=(0, c, 0, c)$ then the inverse Fourier transform is $\mathbf{g}=\frac{1}{2}(c, 0,-c, 0)$. Which is a cosine. (2 P.)
Alternatively one can argue that with a Fourier shift these correspond to $c_{0}(g)=$ $0=c_{-2}(g)=0$ and $c_{ \pm 1}(g)=c$ and this corresponds to $a_{1}=2 c_{1}=2 c$ and all other coefficients $a_{0} a_{n}=0(n \neq 1)$ and $b_{n}=0, n=1,2, \ldots$. Hence g are the sampling values $g_{j}=g\left(t_{j}\right)$ at $t_{j}=\frac{\pi j}{2}, j=0,1,2,3$ of

$$
g(x)=2 c \cos (x) .
$$

d) No, since with the Fourier shift this corresponds to $c_{-4}=\hat{h}_{4}, c_{-3}=\hat{h}_{5}$, .., so with $c_{-1}=\hat{h}_{7}=1$ but $c_{1}=\hat{h}_{1}=0$ the condition that $c_{k}=\overline{c_{-k}}$ does not hold.

Alternatively one can argue that the inverse Fourier transform consists of the seventh column of \mathcal{F}_{8}^{-1} and that this column contains for example i which is then an entry of h.

Problem 8. (Heat equation, 12 points)
Consider the following partial differential equation: find $u(x, t)$ that fulfils

$$
\begin{align*}
& \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=\sin (3 \pi x), \tag{2}\\
& u(0, t)=u(1, t)=0, \quad t \geq 0 \tag{3}\\
& u(x, 0)=0, \quad 0 \leq x \leq 1 \tag{4}
\end{align*}
$$

which is an inhomogeneous heat equation.
a) Consider the functions $u_{n}(x, t)=\mathrm{e}^{-\omega_{n}^{2} t} \sin \left(\omega_{n} x\right)$, with $n \in \mathbb{N}$ and $\omega_{n} \in \mathbb{R}$. Determine the values ω_{n} such that $u_{n}(0, t)=u_{n}(1, t)=0$, and show that

$$
\frac{\partial u_{n}}{\partial t}-\frac{\partial^{2} u_{n}}{\partial x^{2}}=0 .
$$

b) Show that $v(x, t)=\frac{1}{9 \pi^{2}} \sin (3 \pi x)$ satisfies the equation

$$
\frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}=\sin (3 \pi x)
$$

and the boundary conditions $v(0, t)=v(1, t)=0$.
c) Using superposition, the general solution for Eq. (2) with boundary conditions (3) can be written as

$$
u(x, t)=\frac{1}{9 \pi^{2}} \sin (3 \pi x)+\sum_{n=1}^{\infty} B_{n} \mathrm{e}^{-\omega_{n}^{2} t} \sin \left(\omega_{n} x\right) .
$$

Determine the real coefficients B_{n} so that the initial condition (4) is satisfied.

Solution.

a) We have
$\frac{\partial u_{n}}{\partial t}-\frac{\partial^{2} u_{n}}{\partial x^{2}}=-\omega_{n}^{2} \mathrm{e}^{-\omega_{n}^{2} t} \sin \left(\omega_{n} x\right)-\omega_{n}\left(-\omega_{n}\right) \mathrm{e}^{-\omega_{n}^{2} t} \sin \left(\omega_{n} x\right)=0 \quad$ for all $\omega_{n} \in \mathbb{R}$.
The boundary condition at $x=0$ is already satisfied for all $\omega_{n} \in \mathbb{R}$
The condition at $x=1$ require $\sin \left(\omega_{n} \cdot 1\right)=0$, since $\mathrm{e}^{-\omega_{n}^{2} t} \neq 0$, that is,

$$
\begin{equation*}
\omega_{n}=n \pi, \quad \text { with } \quad n \in \mathbb{N} . \tag{1P.}
\end{equation*}
$$

We can thus write $u_{n}(x, t)=\mathrm{e}^{-(n \pi)^{2} t} \sin (n \pi x)$.
b) We can verify by computing the derivatives
$\frac{\partial v}{\partial t}=0 \quad$ and $\quad \frac{\partial^{2} v}{\partial x^{2}}=-\sin (3 \pi x), \quad$ that $\quad \frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}=0-(-\sin (3 \pi x))=\sin (3 \pi x)$.
At the boundary we obtain

$$
v(0, t)=\frac{1}{9 \pi^{2}} \sin (0)=0 \quad \text { and } \quad v(1, t)=\frac{1}{9 \pi^{2}} \sin (3 \pi)=0
$$

c) The initial conditions require

$$
0=u(x, 0)=\frac{1}{9 \pi^{2}} \sin (3 \pi x)+\sum_{n=1}^{\infty} B_{n} \sin (n \pi x), \quad \text { that is, } \quad \sum_{n=1}^{\infty} B_{n} \sin n \pi x=-\frac{1}{9 \pi^{2}} \sin (3 \pi x) .
$$

Hence, B_{n} are the coefficients of a Fourier series. Since the right-hand side is one of the summands (with a prefactor), we can directly read of the coefficients(1 P.)

$$
B_{n}= \begin{cases}-\frac{1}{9 \pi^{2}} & \text { if } n=3 \\ 0 & \text { else }\end{cases}
$$

Problem 9. (Separation of Variables, 8 points)
Consider the fourth order PDE

$$
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{4} u}{\partial x^{4}}=0, \quad x \in[0,1], t \geq 0 .
$$

a) Use the Ansatz $u(x, t)=F(x) G(t)$ to transform the PDE into a system of ODEs.
b) Verify that for $\beta>0, A, B \in \mathbb{R}$ all functions of the form

$$
\begin{equation*}
F(x)=A \sin (\beta x)+B \cos (\beta x) \tag{5}
\end{equation*}
$$

satisfy the ODE for F in a).
We add the following (four) boundary conditions for $t>0$

$$
\left\{\begin{array}{l}
u(0, t)=u(1, t)=0, \\
\frac{\partial^{2}}{\partial x^{2}} u(0, t)=\frac{\partial^{2}}{\partial x^{2}} u(1, t)=0 .
\end{array}\right.
$$

For which β, A, B do the functions in (5) fulfil the boundary conditions?
c) How many initial conditions would you expect to be given to have a unique solution for G ?

Hint. Compare this PDE to what you know about the heat and wave equation and their second ODE to solve.
d) Which other non-trivial function(s) F also fulfil the ODE derived in a)? State an example. You can ignore the boundary conditions.

Solution.

a) We use the Ansatz $u(x, t)=F(x) G(t)$ to obtain

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)=F(x) G^{\prime \prime}(t)=-F^{(4)}(x) G(t)=-\frac{\partial^{4}}{\partial x^{4}} u(x, t) \tag{1P.}
\end{equation*}
$$

which we rearrange to

$$
\frac{G^{\prime \prime}(t)}{G(t)}=-\frac{F^{(4)}(x)}{F(x)}=-k
$$

where k is a constant. We obtain the two ODEs

$$
\begin{align*}
F^{(4)}(x)-k F(x) & =0 \tag{1P.}\\
G^{\prime \prime}(t)+k G(t) & =0
\end{align*}
$$

b) In the Ansatz from a) the boundary conditions yield that a solution to the ODE w.r.t. F has to fulfil

$$
u(0, t)=F(0) G(t)=F(1) G(t)=u(1, t)=0
$$

for all $t>0$. Hence $F(0)=F(1)=0$.
Similarly the other boundary conditions yield that $F^{\prime \prime}(0)=F^{\prime \prime}(1)=0$. (1 P.)
We first verify that the given form fulfils the ODE. We have

$$
\begin{aligned}
F^{\prime}(x) & =A \beta \cos (\beta x)-B \beta \sin (\beta x) \\
F^{\prime \prime}(x) & =-A \beta^{2} \sin (\beta x)-B \beta^{2} \cos (\beta x) \\
F^{(3)}(x) & =-A \beta^{3} \cos (\beta x)+B \beta^{3} \sin (\beta x) \\
F^{(4)}(x) & =A \beta^{4} \cos (\beta x)+B \beta^{4} \cos (\beta x)=\beta^{4} F(x)
\end{aligned}
$$

Hence it fulfils the ODE for F.
For the boundary conditions, we obtain

$$
0=F(0)=A \cdot 0+B \cdot 1=0 \Rightarrow B=0
$$

So we can continue with just functions of the form $F(x)=A \sin (\beta x)$. From the second boundary condition we obtain

$$
\begin{equation*}
0=F(1)=A \sin (\beta) \Rightarrow \beta=n \pi \tag{1P.}
\end{equation*}
$$

The third and fourth boundary conditions read

$$
\begin{equation*}
0=F^{\prime \prime}(0)=-A \beta^{2} \sin (0) \quad \text { and } \quad 0=F(1)=-A \beta^{2} \sin (\beta) \tag{1P.}
\end{equation*}
$$

The first is true for any β, the second holds for the already found $\beta=n \pi, \beta \in \mathbb{N}$.
c) We need two initial conditions.

An example would be ok as well, we usually need something like

$$
\left\{\begin{array}{l}
u(x, 0)=0 \\
\frac{\partial}{\partial t} u(x, 0)=0
\end{array}\right.
$$

to get a unique solution (for each $\beta=n \pi, n \in \mathbb{N}$ or in other words $k=(n \pi)^{4}$ from b)) in the ODE for G.
d) For example $C \mathrm{e}^{ \pm \beta x}, \beta>0$ fulfils the ODE with $k=\beta^{4}$ as well, or phrased differently, $D \sinh (\beta x)$ and $E \cosh (\beta x)$ do.
(1 P.)

Formula Sheet.
TMA4125 Matematikk 4N, Vår 2022.
Fourier Transform. The Fourier Transform $\hat{f}=\mathcal{F}(f)$ and its inverse $f=\mathcal{F}^{-1}(\hat{f})$ are
$\hat{f}(\omega)=\mathcal{F}(f)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \quad$ and $\quad f(x)=\mathcal{F}^{-1}(\hat{f})(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega$
Laplace Transform. The Laplace transform $F(s)$ of $f(t), t \geq 0$, reads

$$
F(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t
$$

List of Fourier Transforms.

List of Laplace Transforms.

$f(x)$	$\hat{f}(\omega)$
$\mathrm{e}^{-a x^{2}}$	$\frac{1}{\sqrt{2 a}} \mathrm{e}^{-\frac{\omega^{2}}{4 a}}$
$\mathrm{e}^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \frac{a}{\omega^{2}+a^{2}}$
$\frac{1}{x^{2}+a^{2}}$ for $a>0$	$\sqrt{\frac{\pi}{2}} \frac{\mathrm{e}^{-a\|\omega\|}}{a}$
$\begin{cases}1 & \text { for }\|x\|<a \\ 0 & \text { otherwise. }\end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin (\omega a)}{\omega}$

$f(t)$	$\frac{F(s)}{s^{2}+\omega^{2}}$
$\cos (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{s}{s^{2}-\omega^{2}}$
$\cosh (\omega t)$	$\frac{\omega}{s^{2}-\omega^{2}}$
$\sinh (\omega t)$	$\frac{\Gamma(n+1)}{s^{n+1}}$, see Note ${ }^{(a)}$
t^{n}	$\frac{1}{s-a}$
$\mathrm{e}^{a t}$	$\mathrm{e}^{-s a} F(s)$
$f(t-a) u(t-a)$	$\mathrm{e}^{-s a}$
$\delta(t-a)$	

Trigonometric identities.

- $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \quad \cdot 2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$
- $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
- $2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta)$
- $\sin \alpha \cos \beta=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
- $2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)$
- $\cos (2 \alpha)=2 \cos ^{2}(\alpha)-1=1-2 \sin ^{2}(\alpha)$
- $2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)$

We also discussed the sinus cardinalis $\operatorname{sinc}(x)=\frac{\sin x}{x}$.
Fourier Series. For a 2π-periodic function f we can write

$$
f \sim \sum_{k=-\infty}^{\infty} c_{k} \mathrm{e}^{\mathrm{i} k x}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

with coefficients
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x, \quad n=0,1,2, \ldots, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x, \quad n=1,2, \ldots$, $c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x, \quad k \in \mathbb{Z}$.

