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Team

Lecturer.
Lecturer: Ronny Bergmann (office hour: Wed. 16:15-17:15, online)
Sentralbygg 2, 1034, ronny.bergmann@ntnu.no

Tue 12:15 – 14:00 & Wed 14:15 –16:00 online for now

The lecture will be in english.

Teaching Assistants.

Ludwig Rahm
ludwig.rahm@ntnu.no

Øyvind S. Auestadt
oyvinau@ntnu.no
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Resources
We have

▶ the wiki for all information
https://wiki.math.ntnu.no/tma4125/2022v/

▶ the course description
https://www.ntnu.edu/studies/courses/TMA4125/

▶ the forum for feedback and questions
https://mattelab2022v.math.ntnu.no/c/tma4125/

▶ the blackboard group (mainly) for announcements
https://ntnu.blackboard.com/

▶ Panopto for recordings (link later in wiki)
▶ a JupyterHub http://tma4125.apps.stack.it.ntnu.no
▶ ovsys2 to hand in exercises https://ovsys.math.ntnu.no/

https://wiki.math.ntnu.no/tma4125/2022v/
https://www.ntnu.edu/studies/courses/TMA4125/
https://mattelab2022v.math.ntnu.no/c/tma4125/
https://ntnu.blackboard.com/
http://tma4125.apps.stack.it.ntnu.no
https://ovsys.math.ntnu.no/
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Reference group

I need a reference group:
▶ at least 3 students
▶ diverse group (study subjects, gender, ...)

What that means:
▶ 3 meetings, each about 30-60 minutes, digital or in my office
▶ a student makes a summary of the meeting (posted on Blackboard)
▶ goal: collect reactions, advice, opinions from the class
▶ write a short report about the class for the Quality Assurance

System of NTNU
▶ You will receive a certificate that your participation

Please email me (ronny.bergmann@ntnu.no) if you are willing to be in the
reference group (subject “[TMA4125] Reference group”)

mailto:ronny.bergmann@ntnu.no
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Let‘s get started – with three short questions
https://www.menti.com/ye259f1zcy menti.com Code 2729 9665

https://www.menti.com/ye259f1zcy
menti.com
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TMA4125 Matematikk 4N – What is it about?

In a nutshell, the lecture is about

We want to look at analytical amd numerical techniques for solving
ordinary differential equations (ODEs) as well as partial differential
equations (PDEs).

We further introduce some numerical concepts in general.
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Mathematical Modelling and Scientifc Computing
In many engineering and science problems, we need to go through the
following six steps to arrive at a solution

1. Mathematical Modelling How can we describe the problem in
mathematical terms?

2. Analysis of the model Is the model well-posed in the sense that
a) there is a solution? (Existence)
b) there is only one solution? (Uniqueness)
c) the model depends continuously on the data?

(Continuity/Stability)
3. Solve the resulting model Two approaches are typically
considered:
a) Analytical methods compute the exact solution
b) Numerical methods compute a solution computational means.

The obtained solution can be either exact or (just)
an approximation to the exact solution.



8

Mathematical Modelling and Scientifc Computing II
4. Realization Devise an efficient algorithmic realization of the chosen
solution method.

5. Postprocessing of the computed solution to make it interpretable
e.g. through visualization

6. Verification and Validation
a) Verification: "Do I solve the problem correctly?", i.e.:

Does the realization from (3.) solve the model problem (2.)?
b) Validation: "Do I solve the correct problem?", i.e.:

Does the model (2.) describe the problem (1.)
correctly/sufficiently?

Our focus: Steps 3(b), 4 and 5. Especially
▶ well-posedness of a numerical method itself
▶ the complexity of the proposed method/algorithm.
▶ the accuracy of the proposed method (in comparison to its

complexity)
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TMA4125 Matematikk 4N
We consider analytical and numerical methods e. g. for algebraic
equations, ordinary differential equations (ODEs), partial differential
equations (PDEs) :

1. Introduction to numerical mathematcs
▶ Interpolation of functions (N)
▶ Numerical integration a.k.a quadrature (N)
▶ Solving non-linear algebraic equations numerically (N)

2. Analytical & numerical methods for ODEs
▶ Laplace transform (A)
▶ Runge-Kutta methods (N)

3. Analytical & numerical methods for PDEs
▶ Fourier series and transforms (A)
▶ Fourier-based methods to solve

the heat and wave equation analytically (A)
▶ Finite-difference methods to solve

the heat and wave equation numerically (N)
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Preliminaries

Let‘s recap concepts from earlier lectures and extend them slightly.
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Real vector spaces
A real vector space is a set V together with
operations + (addition) and · (multiplication with a scalar) that satisfy

1. x + y ∈ V for all x , y ∈ V

2. x + y = y + x for all x , y ∈ V

3. x + (y + z) = (x + y) + z for all x , y , z ∈ V

4. There exists some element 0 ∈ V such that x + 0 = x for all x ∈ V

5. For all x ∈ V , there exists some element (−x) ∈ V s. t. x + (−x) = 0
6. α · x ∈ V for all x ∈ V and α ∈ R
7. α · (β · x) = (αβ) · x for all x ∈ V and α, β ∈ R
8. 1 · x = x for all x ∈ V

9. α · (x + y) = α · x + α · y for all x , y ∈ V and α ∈ R
10. (α+ β) · x = α · x + β · x for all x ∈ V and α, β ∈ R
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Complex vector spaces

A complex vector space is defined in exactly the same way as a real
vector space, just replacing R with C in the definition from the last slide,
so that the scalars are now allowed to be complex numbers.
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Examples of vector spaces

The following examples we will see throughout the course

▶ The set Rm of real vectors with m components
▶ The set Rm×n of real-valued m × n matrices
▶ The set Pn of polynomials of degree n or less
▶ The set Cm[a, b] of all functions with continuous first m derivatives

on the interval [a, b].
we write C [a, b] for C 0[a, b], i.e. the set of all continuous functions.

Note that Cn[a, b] ⊂ Cm[a, b] for n > m. Further, Pn ⊂ C∞[R].

Exercise. Let‘s verify that Pn and Cm[a, b] are actually vector spaces.
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Exercise: Vector spaces of Polynomials Pn

What are “+” and “·” for polynomials f , g ∈ Pn?

(f + g)(x) =

(α · f )(x) =
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Exercise: Vector spaces of smooth functions Cm[a, b]

What are “+” and “·” for f , g ∈ C [a, b]?

(f + g)(x) =

(α · f )(x) =
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Norms

Let V be a vector space. A norm ∥·∥ is a function such that the following
properties hold
1. ∥x∥ ≥ 0 for all x ∈ V

2. ∥x∥ = 0 if and only if x = 0
3. ∥α · x∥ = |α|∥x∥ for all x ∈ V and α ∈ R
4. ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x , y ∈ V (triangle inequality)

Remarks.
▶ the norm ∥·∥ of x ∈ V is essentially a measure of the size of x
▶ the norm ∥x − y∥, x , y ∈ V , is a measure for the distance between x

and y or put differently, how similar they are.
▶ there are usually different meaningful norms for a vector space V
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Norms for Rn

On Rn, n ∈ N we denote elements by x = (x1, . . . , xn)
T ∈ Rn.

Then we have the following norms
▶ The maximum norm ∥x∥∞ = max

i=1,2,...,n
|xi |

▶ The Euclidean norm ∥x∥2 =

√√√√ n∑
i=1

x2
i

▶ more generally the ℓp norm ∥x∥p =

( n∑
i=1

|xi |p
)1/p

, 1 ≤ p ≤ ∞

Note. For n = 1 all these are equal and we just use ∥x∥ = |x |.
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Norm of functions C [a, b]
On C [a, b], a < b, we can similarly define for a function f ∈ C [a, b] the
following norms

▶ The maximum-norm ∥f ∥∞ = max
x∈[a,b]

|f (x)|

▶ The L2-norm ∥f ∥2 =

√∫ b

a
f (x)2 dx

▶ more generally the Lp-norm ∥f ∥p =

(∫ b

a
|f (x)|p dx

)1/p

, 1 ≤ p ≤ ∞

For two functions f , g ∈ C [a, b]

▶ ∥f − g∥∞ measures the maximal pointwise difference
▶ ∥f − g∥2 measures the average (quadratic) difference

Exercise. Check that ∥f ∥2 is a norm.
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Examples of norms

For the Rn let‘s look at a small Python code example.

Let f (x) = sin(x) on [0, 2π] be given. Then f ∈ C [0, 2π].

We obtain

∥f ∥2 =

√∫ 2π

0
sin2(x) dx =

√
π ≈ 1.7725

∥f ∥∞ = max
x∈[0,2π]

|sin(x)| = 1
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Scalar product
A scalar product (also called inner product) ⟨·, ·⟩ on a real vector space
V is a symmetric, positive definite bilinear form on V , that is, it is a
mapping ⟨·, ·⟩ : V × V → R which is

bilinear
1. ⟨αx + βy , z⟩ = α⟨x , z⟩+ β⟨y , z⟩ for all x , y , z ∈ V and α, β ∈ R
2. ⟨z , αx + βy⟩ = α⟨z , x⟩+ β⟨z , y⟩ for all x , y , z ∈ V and α, β ∈ R

symmetric
3. ⟨x , y⟩ = ⟨y , x⟩ for all x , y ∈ V

and positive definite
4. ⟨x , x⟩ ≥ 0 for all x ∈ V and ⟨x , x⟩ = 0 ⇔ x = 0.

Note. A scalar product induces a norm given by ∥x∥ =
√

⟨x , x⟩
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Examples of scalar products
We know already on Rn: ⟨x , y⟩ = xTy =

n∑
i=1

xiyi is a scalar product.

For f , g ∈ C [a, b] we obtain a scalar product by

⟨f , g⟩ :=
∫ b

a
f (x)g(x) dx

Clearly this is symmetric and bilinear (Why? Verify!)

But is it positive definite? Sure. Looking at

⟨f , f ⟩ =
∫ b

a
f (x)2 dx

we see that the argument is the same as for
the L2-norms definiteness since ∥f ∥2 =

√
⟨f , f ⟩.
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Orthogonal vectors

Let V be a vector space with scalar product ⟨· , ·⟩ and x , y ∈ V . Then x
and y are said to be orthogonal if ⟨x , y⟩ = 0.

Example 1. We know e. g. V = R3: x = (1, 2, 3)T and y = (3, 0,−1)T are
orthogonal.

Example 2. on V = C [−1, 1] with inner product ⟨f , g⟩ =
∫ 1

−1
f (x)g(x)dx .

Then the two functions f (x) = x and g(x) = x2 are orthogonal, i. e.
⟨f , g⟩ = 0

Let‘s convince ourselves with a little Python.
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Cauchy-Schwarz inequality

Assume we have a vector space V with inner product ⟨· , ·⟩.
Then for f , g ∈ V it holds that

|⟨f , g⟩| ≤ ∥f ∥∥g∥

This is the Cauchy-Schwarz inequality (CSI) and holds for any abstract
inner product.

More precisely we have

|⟨f , g⟩| < ∥f ∥∥g∥

unless f = λg for some λ ∈ R
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Gram-Schmidt orthogonalization
Let {a1, . . . , an} ∈ Rm n linearly independent vectors in Rm.
The Gram-Schmidt orthogonoalization process allows to orthogonalize
the set: This means, we can construct a set {q1, . . . ,qn} of orthogonal
(orthonormal) vectors which have the same span as the original set.

Algorithm.
y1 := a1, q1 :=

y1
∥y1∥

y2 := a2 − ⟨q1 , a2⟩q1, q2 :=
y2

∥y2∥

and so on. the eneral formula for k = 2, . . . , n:

yk := ak −
k−1∑
i=1

⟨q i , ak⟩q i , qk :=
yk

∥yk∥
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Gram-Schmidt orthogonalization

Note. The Gram-Schmidt orthogonalization only requires a vector
space V (to do the multiplication and subtraction) and a scalar product
to make sense.

⇒ Given any linearly independent f1, f2, . . . , fn ∈ V we can orthogonalize
them with Gram-Schmidt!
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Orthogonal projection
Let V be a vector space endowed with an inner product ⟨· , ·⟩. Let
Vn ⊂ V be a finite dimensional subspace. Due to Gram-Schmidt we can
construct an orthonormal basis {e1, . . . , en} of Vn.

We define the orthogonal projection

ΠVn
:= Πn : V → Vn

by requiring that for v ∈ V its projection Πnv must satisfy

⟨Πnv ,w⟩ = ⟨v ,w⟩ for all w ∈ Vn.

Rephrased we obtain, that the projection error Πnv − v
must satisfy a orthogonal property with respect to Vn:

⟨Πnv − v ,w⟩ = 0 for all w ∈ Vn.

Is it well-defined? How to compute it?
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The orthogonal projection is well defined.
Since {e1, . . . , en} is an ONB of Vn, we can write Πnv and w ∈ V as

Πnv =
n∑

i=1

ṽiei and w =
n∑

j=1

wjej

Plugging this in (and using linearity of ⟨· , ·⟩) yields for both sides

⟨Πnv ,w⟩ =
n∑

j=1

wj⟨Πnv , ej⟩ =
n∑

j=1

wj

n∑
i=1

ṽi ⟨ei , ej⟩ and ⟨v ,w⟩ =
n∑

j=1

wj⟨v , ej⟩

For ⟨Πnv ,w⟩ = ⟨v ,w⟩ we need for j = 1, . . . , n that
n∑

i=1

ṽi ⟨ei , ej⟩ =
n∑

i=1

ṽi ⟨ej , ei ⟩ = ⟨v , ej⟩ =: bj

Since ⟨ei , ej⟩ = δij =

{
1 for i = j

0 else,
we get Id(ṽ1, . . . , ṽn)

T = (b1, . . . , bn)
T
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Best approximation theorem
Theorem. For any v ∈ V we have for the approximation error

∥Πnv − v∥ = min
w∈Vn

∥w − v∥.

Proof.
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Taylor expansions

Given a function f ∈ C∞[a, b], a point x0, and an increment h = x − x0
such that x0, x0 + h ∈ [a, b], the Taylor series expansion of f around x0 is
given by

∞∑
k=0

f (k)(x0)

k!
(x − x0)

k =
∞∑
k=0

f (k)(x0)

k!
hk

The function f is called analytic in x0 is the series converges for
sufficiently small values of h, i. e. if

f (x) =
∞∑
k=0

f (k)(x0)

k!
(x − x0)

k
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Interlude: the big O-notation

Let f and g be some real valued function and a ∈ R. We say that

f (x) = O(g(x)) as x → a

if there exist δ > 0 andM > 0 such that

|f (x)| ≤ M|g(x)| when 0 < |x − a| < δ

That is: locally around a the function f can be bounded (up to a
constant,M) by the function g .
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Taylor Polynomial
In numerics we usually truncate the sum after m summands.

We obtain the Taylor polynomial (and a Remainder) for any
f ∈ Cm+1[a, b] defined as

f (x) =
m∑

k=0

f (k)(x0)

k!
(x − x0)

k + Rm+1(x0)

where the remainder term is given by

Rm+1(x0) =
f m+1(ξ)

(m + 1)!
(x − x0)

m+1,

for some unknown ξ between x0 and x .

We often write this using the big O-notation

f (x0 + h) =
m∑

k=0

f (k)(x0)

k!
hk +O(hm+1)
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Some other useful results

Theorem 1. Let f ∈ C [a, b] and let u be a number between f (a) and
f (b). Then there exists at least one ξ ∈ (a, b) such that f (ξ) = u

Theorem 2. (Rolle‘s theorem) Let f ∈ C 1[a, b] and f (a) = f (b) = 0. Then
there exists at least one ξ ∈ (a, b) such that f ‘(ξ) = 0.

Theorem 3. Let f ∈ C 1[a, b]. Then there exists at least one ξ ∈ (a, b)
such that

f ‘(ξ) =
f (b)− f (a)

b − a
.


