
N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy TMA4125 Matematikk 4N

Polynomial interpolation: Methods

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

January 12, 2022



2

Interpolation: basic idea

Often we get some discrete measurement data (xi , yi ), i = 0, . . . , n.

Goal. Find a function f that describes this data, i. e.

f (xi ) = yi i = 0, . . . , n,

and that f is from a certain class (smoothness, polynomial,...) – let‘s say
“nice” function

Task. If we have a complicated function g , we might take (xi , g(xi )), find
a “nice” function (e. g. easy to integrate) and use the approach from
above.



3

Polynomial interpolation

Task. Given n + 1 points (xi , yi ), i = 0, . . . , n, find a polynomial p(x) of
lowest possible degree satisfying the interpolation condition

p(xi ) = yi i = 0, . . . , n.

The solution p(x) is called interpolation polynomial.

The values xi are called nodes, the points (xi , yi ) are called interpolation
points.



4

Example of an interpolation problem
For given data
i 0 1 2
xi 0 2

3 1

yi 1 1
2 0

The corresponding interpolation polynomial is

p2(x) =
1
4
(
−3x2 − x + 4

)
.

The data are sample values of cos(π2 x) on [0, 1].

0.25 0.5 0.75 1

0.5

1

x

y
(xi , yi )

p2(x)

cos(π2 x)

▶ p2 interpolates the data.
▶ Locally (on [0, 1]) p2 explains

the function cos(π2 x) quite
well.



5

Roadmap

We will discuss the following

▶ Method. How to compute the interpolation polynomial?
▶ Existence and uniqueness results
▶ Error analysis. If the polynomial is used to approximate a

function, how good is the approximation?
▶ Improvements. If the nodes xi can be chosen freely, how should

we do it in order to reduce the error?



6

Polynomials: some useful facts

We already learned about

▶ Pn the set of polynomials of degree n or less
▶ Cm[a, b] the set of all continuous functions that have continuous

first m derivatives

and a polynomial of degree n we denote by pn ∈ Pn written as

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x + c0 =
n∑

i=0

cix
i ,

where ci ∈ R, i = 0, . . . , n, are some real coefficients.



7

Roots of a polynomial

The value r is a root or zero of a polynomial p if p(r) = 0.

A nonzero polynomial pn of dergree n can never have more than n real
roots (there are maybe less).

A polynomial pn of degree n with n real roots r1, r2, . . . , rn ∈ R can be
written as

pn(x) = c(x − r1)(x − r2) · . . . · (x − rn) = c
n∏

i=1

(x − ri ).



8

Direct method

For a polynomial pn of degree n we can write down the interpolation
conditions that

pn(xj) =
n∑

i=0

cix
i
j = yj , for j = 0, . . . , n

has to hold.
These are n + 1 equations and we have n + 1 unknowns c0, c1, . . . , cn.

Usually you do not do this approach for larger n, since numerically this
is hard to solve.



9

Lagrange interpolation
Given n + 1 points (xi , yi ), i = 0, . . . , n, with distinct values of xi .
Then the cardinal functions ℓi , i = 0, . . . , n, are defined by

ℓi (x) =
n∏

j=0
j ̸=i

x − xj
xi − xj

=
x − x0

xi − x0
· x − x1

xi − x1
· . . . · x − xi−1

xi − xi−1
· x − xi+1

xi − xi+1
· . . . · x − xn

xi − xn

They have the following properties

▶ ℓi ∈ Pn for i = 0, . . . , n

▶ ℓi (xj) = δij =

{
1 when i = j ,

0 else
▶ they are constructed solely from the nodes xi (no yi involved)
▶ they are linearly independent⇒ form a basis of Pn.
▶ they are also called Lagrange polynomials



10

Interplation with cardinal functions

The interpolation polynomial is now given by

pn(x) =
n∑

i=0

yiℓi (x)

since we have

pn(xj) =
n∑

i=0

yiℓi (xj) = yjℓj(xj) = yj for j = 0, . . . , n.



11

Example of cardinal functions

For given data
i 0 1 2

xi 0 1 3
yi 3 8 6

we get

ℓ0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

(x − 1)(x − 3)
(0 − 1)(0 − 3)

=
1
3
x2 − 4

3
x + 1

ℓ1(x) =
(x − 0)(x − 3)
(1 − 0)(1 − 3)

= −1
2
x2 +

3
2
x

ℓ2(x) =
(x − 0)(x − 1)
(3 − 0)(3 − 1)

=
1
6
x2 − 4

6
x

and the corresponding interpolation polynomial looks like

p2(x) = 3ℓ0(x) + 8ℓ1(x) + 6ℓ2(x)

= −2x2 + 7x + 3



12

Implementation

The method above is implemented as two functions
▶ cardinal(xdata, x) creates a list of cardinal functions ℓi (x)

evaluated in x .
▶ lagrange(ydata, l) creates the interpolation polynomial pn(x).

Here,
▶ xdata and ydata are arrays with the interpolation points xi and yi ,

respectively,
▶ x is an array of values in which the polynomials are evaluated.
▶ l is what cardinal(xdata,x) returns

You are not required to understand the implementation
of these functions, but you should know how to use them.



13

Existence and uniqueness of interpolation polynomials

We have already proved the existence of such polynomials, simply by
constructing them. But are they unique? The answer is yes!

Theorem. (Existence and uniqueness.)
Given n+ 1 points (xi , yi )ni=0 with distinct x values. Then there is one and
only one polynomial pn(x) ∈ Pn satisfying the interpolation condition

pn(xi ) = yi , i = 0, . . . , n.

Proof.
Suppose there exist two different interpolation polynomials pn and qn
of degree n interpolating the same n + 1 points. The polynomial
r(x) = pn(x)− qn(x) is of degree n with zeros in all the nodes xi , that is a
total of n + 1 zeros. But then r ≡ 0, and the two polynomials pn and qn
are identical.



14

Lagrange – final notes

Advantage.
Given nodes x0, . . . , xn we can directly compute the
cardinal functions ℓi (x), i = 0, . . . , n

This is independent of y0, . . . , yn, so we can reuse the cardinal functions:
given new/second values ỹ0, . . . , ỹn (to the same nodes)!
(just call lagrange(tildeydata, l))

Disadvantage.
All ℓ0, . . . , ℓn have as highest monomial xn.

Given the nodes x0, . . . , xn and their cardinal functions ℓi (x), i = 1, . . . , n,
and someone comes along with an additional node xn+1
⇒ I have to compute new cardinal function ℓ̃0, . . . , ℓ̃n and a new ℓ̃n+1



15

Newton interpolation
Let‘s look at alternative approach to find the interpolation polynomial.
Let x0, x1, . . . , xn be n + 1 distinct real numbers.

Then instead of the cardinal polynomials to form pn, we will employ the
so-called Newton polynomials ωi , i = 0, . . . , n defined by

ω0(x) = 1,
ω1(x) = (x − x0),

ω2(x) = (x − x0)(x − x1),

...
ωn(x) = (x − x0)(x − x1) · . . . · (x − xn−1),

or compact: ωi (x) =
i−1∏
k=0

(x − xk), for i = 0, . . . , n.



16

Newton form of the interpolation polynomial
The so-called Newton form of a polynomial of degree n is an expansion
of the form

p(x) =
n∑

i=0

ciωi (x)

or more explicitly

p(x) = cn(x − x0)(x − x1) · . . . · (x − xn−1)

+ cn−1(x − x0)(x − x1) · . . . · (x − xn−2)

+ · · ·
+ c2(x − x0)(x − x1)

+ c1(x − x0)

+ c0.



17

Computing the coefficients in Newton form

Let us start with yj = f (xj) (for a nicer form) and a single node x0.
Then y0 = f (x0) = p(x0) = c0.

One step further: Consider consider two nodes x0, x1. Then we see that
f (x0) = p(x0) = c0 (as before) and

f (x1) = p(x1) = c0 + c1(x1 − x0).

Since we know c0 = f (x0) we can rearrange this

c1 =
f (x1)− c0
x1 − x0

=
f (x1)− f (x0)

x1 − x0



18

Computing the coefficients in Newton form II
Given three nodes x0, x1, x2 yields the coefficients c0, c1 as defined
before, and from

f (x2) = p(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)

we get by rearranging and plugging in c0, c1

c2 =
f (x2)− c0 − c1(x2 − x0)

(x2 − x0)(x2 − x1)
=

f (x2)− f (x0)− f (x1)−f (x0)
x1−x0

(x2 − x0)

(x2 − x0)(x2 − x1)
.

We can divide numerator and denominator by (x2 − x1).
Then simplifying the numerator

c2 =

f (x2)−f (x1)
x2−x1

− f (x1)−f (x0)
x1−x0

x2 − x0
.

This is a finite difference of finite differences.



19

Iterated finite differences
Continuing this yields a so-called triangular systems that permits to
define the remaining coefficients c3, . . . , cn.
We easily see that ck only depends on the interpolation points
(x0, y0), . . . , (xk , yk), where yi := f (xi ), i = 0, . . . , n.

We introduce the finite difference notation for a function f :

0th order f [x0] := f (x0)

1st order f [x0, x1] :=
f (x1)− f (x0)

x1 − x0

2nd order f [x0, x1, x2] :=
f [x1, x2]− f [x0, x1]

x2 − x0
.

nth order f [x0, x1, . . . , xn] :=
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

These are also called nth Newton divided differences.



20

Newtons method for interpolation – summary

Given n + 1 interpolation points (x0, y0), . . . , (xn, yn), yi := f (xi ).
Expressing the order n interpolation polynomial pn in Newton’s form

pn(x) = cn(x − x0)(x − x1) · . . . · (x − xn−1)

+ cn−1(x − x0)(x − x1) · . . . · (x − xn−2)

+ · · ·+ c1(x − x0) + c0,

yields that the coefficients are given by

ck = f [x0, x1, . . . , xk ], k = 0, 1, . . . , n.

In fact, a recursion is in place

pn(x) = pn−1(x) + f [x0, . . . , xn](x − x0)(x − x1) · · · (x − xn−1)



21

The finite differences table

It is common to write the finite differences in a table, which for n = 3
will look like:

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3]

x3 f [x3]



22

Newton divided differences for the first example
Given the points in Example 1.
The corresponding table of divided differences becomes:

0 1

−3
4

2
3

1
2

−3
4

−3
2

1 0

Let‘s take a look how we get to these numbers.
The final interpolation polynomial then reads

p2(x) = 1 − 3
4
(x − 0)− 3

4
(x − 0)(x − 2

3
) = 1 − 1

4
x − 3

4
x2.



23

Implementation

The method above is implemented as two functions:
▶ divdiff(xdata, ydata) Create the table of divided differences
▶ newton_interpolation(F, xdata, x) Evaluate the interpolation

polynomial.

Here,
▶ xdata and ydata are arrays with the interpolation points,
▶ F is the result from the first function, and
▶ x is an array of values in which the polynomial is evaluated.


