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Introduction.
Imagine you want to compute the (finite) integral

I [f ](a, b) :=

∫ b

a
f (x)dx

The “usual” way is to find a primitive function F (also known as
indefinite integral f ) satisfying F ′(x) = f (x). Then we can compute∫ b

a
f (x)dx = F (b)− F (a)

Challenge. Computing F analytically might be hard or F might not have
a closed analytical form. For example

f (x) = e−x2 (no elementary function F )

f (x) =
log(2 + sin(1

2 −
√
x)6)

log(π + arctan(
√

1 − exp(−2x − sin(x))))
(complicated)
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Numerical quadrature.
A numerical quadrature or a quadrature rule is a formula for
approximating I [f ](a, b). Quadratures are usually of the form

Q[f ](a, b) =
n∑

i=0

wi f (xi ),

where xi , wi , i = 0, 1, . . . , n, are the nodes (points) and the weights of the
quadrature rule, respectively.

A quadrature rule Q[f ](a, b) is defined by its quadrature nodes {xi}ni=0
and weights {wi}ni=0

▶ If f is given from the context, we write just short I (a, b) and Q(a, b).
▶ quadrature rules are linear, i. e. for functions f , g and α, β ∈ R

it holds
Q[αf + βg ](a, b) = αQ[f ](a, b) + βQ[g ](a, b)



4

Known examples.

You already know from Calculus 1:

Mid point rule. The mid point rule is the simplest possible rule

M[f ](a, b) := w0f (x0) = (b − a)f
(a+ b

2

)
The only node is the mid point x0 = a+b

2 with weight w0 = b − a.
Note. Instead of Q we use specific letters for these quadrature rules.
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Known examples.

You already know from Calculus 1:

Trapezoidal rule. We use both boundaries to form a trapezoid.

T [f ](a, b) := w0f (x0) + w1f (x1) = (b − a)f
( f (a) + f (b)

2

)
So here we have x0 = a, x1 = b and w0 = w1 = b−a

2 .
Note. Instead of Q we use specific letters for these quadrature rules.
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Known examples.

You already know from Calculus 1:

Simpson rule. We use all 3 nodes from before

S [f ](a, b) := w0f (x0)+w1f (x1)+w2f (x2) =
b − a

6

(
f (a)+4f

(a+ b

2

)
+ f (b)

)
with x0 = a, x1 = a+b

2 , x2 = b and weights w0 = w2 = b−a
6 and w1 = 2(b−a)

3 .
Note. Instead of Q we use specific letters for these quadrature rules.
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Roadmap

1. construct the (known) quadratures from integration of
interpolation polynomials

2. error analysis
3. composite quadrature rules – how to “divide and conquer”
4. adaptive quadrature rules – how to “divide cleverly”
5. Newton-Côtes & Gauß quadrature
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Quadrature from integrating interpolation polynomials
Recap. Choose n + 1 distinct nodes x0, . . . , xn in the interval [a, b].
Denote by pn the interpolation polynomial satisfying the interpolation
conditions

pn(xi ) = f (xi ), i = 0, . . . , n.

Idea. Integrating polynomials is easy!

⇒ Use
∫ b

a
pn(x)dx as an approximation to

∫ b

a
f (x)dx .

We consider the quadrature

I [f ](a, b) ≈ Q[f ](a, b) :=

∫ b

a
pn(x)dx .

But what about the weights?
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Weights for the quadrature based on pn
To compute the weights we use the Lagrange form:

pn(x) =
n∑

i=0

f (xi )ℓi (x), where ℓi (x) =
n∏

j=0
j ̸=i

x − xj
xi − xj

, i = 0, . . . , n

Due to linearity of the integral we get for the weights wi

Q[f ](a, b) =

∫ b

a
pn(x)dx =

∫ b

a

n∑
i=0

f (xi )ℓi (x)dx

=
n∑

i=0

f (xi )

∫ b

a
ℓi (x)dx =

n∑
i=0

f (xi )wi

So the weights are simply computed as

wi =

∫ b

a
ℓi (x)dx , i = 0, . . . , n,

and are independent of f .
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Revisiting some old and new quadratures

Let’s consider a = 0 and b = 1 for f (x) = cos(πx2 )

Then we can compute (analytically)

I (0, 1) =
∫ 1

0
cos
(πx

2
)
=

2
π
= 0.636619...

Goal. Since we know the exact solution here can check how good the
following rules are.
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The trapezoidal rule revisited
Let n = 1, and take x0 = 0, x1 = 1.
We obtain for the cardinal functions and weights:

ℓ0(x) = 1 − x , w0(x) =

∫ 1

0
(1 − x)dx =

1
2

ℓ1(x) = x , w1(x) =

∫ 1

0
x dx =

1
2

And the corresponding quadrature rule is actually the trapezoidal rule
T (a, b) with [a, b] = [0, 1]

T (0, 1) =
1
2
(
f (0) + f (1)

)
.

Exercise. show that on [a, b] with n = 1, x0 = a, x1 = b this approach
yields the general trapezoidal rule.
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The Gauß-Legendre quadrature
This also works for more complicated choice of the nodes x0, x1.

Let n = 1, and take x0 = 1
2 −

√
3

6 , x1 = 1
2 +

√
3

6 .
We obtain for the cardinal functions and weights:

ℓ0(x) = −
√

3x +
1 +

√
3

2
, w0(x) =

∫ 1

0
ℓ0(x)dx =

1
2

ℓ1(x) =
√

3x +
1 −

√
3

2
, w1(x) =

∫ 1

0
ℓ1(x)dx =

1
2

And the corresponding quadrature rule is

Q(0, 1) =
1
2

(
f
(1

2
−

√
3

6

)
+ f
(1

2
+

√
3

6

))
.
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The Simpson’s rule revisited
We construct the Simpson’s rule on the interval [0, 1] by choosing the
nodes x0 = 0, x1 = 1

2 , x2 = 1.
The corresponding cardinal functions are

ℓ0(x) = 2(x − 1
2
)(x − 1), ℓ1(x) = 4x(1 − x), ℓ2(x) = 2x(x − 1

2
)

and we obtain the weights

w0 =

∫ 1

0
ℓ0(x)dx =

1
6
, w1 =

∫ 1

0
ℓ1(x)dx =

4
6

w2 =

∫ 1

0
ℓ2(x)dx =

1
6
,

such that I [f ](0, 1) =
∫ 1

0
f (x)dx can be approximated by

S [f ](0, 1) =
∫ 1

0
p2(x)dx =

2∑
i=0

wi f (xi )

=
1
6

(
f (0) + 4f

(1
2
)
+ f (1)

)
.
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Exercise. Accuracy of quadrature rules

Back to our example.

For I (0, 1) =
∫ 1

0
cos
(πx

2
)
dx =

2
π
= 0.636619 we can now check, how

accurate / good the quadratures are since we have the actual value for
comparison.

Let’s compare a few.

Remark. Observe that the Gauß-Legendre quadrature gives a much
more accurate answer than the trapezoidal rule. The choice of nodes
clearly matters. Simpson’s rule gives very similar results to
Gauß-Legendre quadrature but uses 3 instead of 2 quadrature nodes.
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Degree of exactness

Definition. A numerical quadrature has degree of exactness d if

Q[p](a, b) = I [p](a, b) for all p ∈ Pd

and there is at least one p ∈ Pd+1 such that Q[p](a, b) ̸= I [p](a, b).

Since both integrals and quadratures are linear, the degree of
exactness is d if

I [x j ](a, b) = Q[x j ](a, b), j = 0, . . . , d

I [xd+1](a, b) ̸= Q[xd+1](a, b).
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Degree of exactness for some quadrature rules

Observation. All quadratures constructed from Lagrange interpolation
polynomials in n + 1 distinct nodes will automatically have a degree of
exactness of least n. This follows immediately from the fact the
interpolation polynomial pn ∈ Pn of any polynomial q ∈ Pn is just the
original polynomial q itself.

We could do this on paper (it’s not so hard) or convince ourselves
numerically. How?

We get
▶ the trapezoidal rule: n + 1 = 2 points and degree of exactness 1
▶ the Simpson rule: n + 1 = 3 points and degree of exactness 3
▶ the Gauß-Legendre rule: n+ 1 = 2 points and degree of exactness 3.
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An error estimate for a quadrature rules

Theorem. (Error Estimate for quadratures with degree of exactness n)

Assume that f ∈ Cn+1[a, b] and let Q[·](a, b) be a quadrature rule with
nodes {xi}ni=0 and weights {wi}ni=0 which has degree of exactness n.

Then the quadrature error |I [f ]− Q[f ]| can be estimated by

|I [f ]− Q[f ]| ≤ M

(n + 1)!

∫ b

a

n∏
i=0

|x − xi |dx

whereM = max
ξ∈[a,b]

|f (n+1)(ξ)|.
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Proof of the error estimate
Let pn ∈ Pn denote the interpolation polynomial satisfying
pn(xi ) = f (xi ), i = 0, . . . , n
We know from the error of interpolation

f (x)− pn(x) =
f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x − xi )

for some ξ(x) ∈ (a, b). Since Q(a, b) has degree of exactness n we have
I [pn] = Q[pn] = Q[f ] and thus

|I [f ]− Q[f ]| = |I [f ]− I [pn]| ≤
∫ b

a
|f (x)− pn(x)|dx

=

∫ b

a

∣∣∣ f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x − xi )
∣∣∣dx

≤ M

(n + 1)!

∫ b

a

n∏
i=0

|x − xi |dx

This concludes the proof.
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Improved error bounds
While this theorem was easy to prove, one can often find sharper
bounds (better estimates of the error) for specific cases. For example
(without proof)

Theorem. For the trapezoidal rule and f ∈ C 2[a, b], there is a ξ ∈ (a, b)
such that

I [f ]− T [f ] =
(b − a)3

12
f ′′(ξ).

For Simpson we use the following idea: Let’s Taylor expand I [f ](a, b)
and S [f ](a, b) around the center point c = a+b

2 .

Indeed one can show.

Theorem. For Simpson’s rule S(a, b) and f ∈ C 4[a, b], there is a ξ ∈ (a, b)
such that

I [f ]− S [f ] = −(b − a)5

2880
f (4)(ξ).
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Quadrature in Practice: Divide and Conquer
In the following, you will learn the steps on how to construct realistic
algorithms for numerical integration, similar to those used in software
like Matlab or SciPy/NumPy. The steps are:

1. Choose n + 1 distinct nodes on a standard interval [−1, 1].
2. Let pn(x) be the polynomial interpolating some general function f

in the nodes, and let the Q[f ](−1, 1) = I [pn](−1, 1).
3. Transfer the formula Q from [−1, 1] to some interval [a, b].
4. Find the composite formula, by dividing the interval [a, b] into

subintervals and applying the quadrature formula on each
subinterval.

5. Find an expression for the error E [f ](a, b) = I [f ](a, b)− Q[f ](a, b).
6. Find an expression for an estimate of the error, and use this to

create an adaptive algorithm.
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Constructing quadrature rules on a single interval

We already have seen how to construct quadrature rules based on
polynomial interpolation:

For n + 1 quadrature points {xi}ni=0 ⊂ [a, b] compute the weights by

wi =

∫ b

a
ℓi (x)dx , for i = 0, . . . , n

where ℓi are (again) the cardinal functions.

⇒ resulting quadrature rule has (at least) exactness equal to n.
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Transfer the formula from [−1, 1] to [a, b]

What if we have different intervals to tackle, say [a, b] and [c, d ]?

Construct your method on a reference interval Î = [−1, 1], determine
your quadrature points {x̂i}ni=0 and weights {ŵi}ni=0 and use the
transformation

x =
b − a

2
x̂ +

b + a

2
so dx =

b − a

2
dx̂

and thus we define the points {xi}ni=0 and weights {wi}ni=0 for [a, b] as

xi =
b − a

2
x̂i +

b + a

2
, wi =

b − a

2
ŵi for i = 0, . . . , n.
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Short example: Simpson’s rule
Simpson’s rule on [−1, 1] uses the nodes t0 = −1, t1 = 0 and t2 = 1.
With the cardinal functions

ℓ0 =
1
2
(t2 − t), ℓ1(t) = 1 − t2, ℓ2(t) =

1
2
(t2 + t).

We get the weights

w0 =

∫ 1

−1
ℓ0(t)dt =

1
3
, w1 =

∫ 1

−1
ℓ1(t)dt =

4
3
, w2 =

∫ 1

−1
ℓ2(t)dt =

1
3

such that∫ 1

−1
f (t)dt ≈

∫ 1

−1
p2(t)dt =

2∑
i=0

wi f (ti ) =
1
3

(
f (−1) + 4f (0) + f (1)

)
.

The transformation yields the points x0 = a, x1 = b+a
2 , x2 = b and we get

S(a, b) =
b − a

6

(
f (a) + 4f

(b + a

2
)
+ f (b)

)
.
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Improving a quadrature rule

To generate more accurate quadrature rules Q[f ](a, b) we have in
principle two possibilities

▶ Increase the order of the interpolation polynomial used to
construct Q(a, b).

▶ Subdivide the interval [a, b] into smaller subintervals and apply a
quadrature rule on each of the subintervals, leading to Composite
Quadrature Rules.
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Composite quadrature rules

For a composite quadrature rule select m ≥ 2 and divide [a, b] into m
equispaced subintervals

[xi−1, xi ] where xi = a+ ih, i = 1, . . . ,m, h =
b − a

m

Then for a given quadrature rule Q[·](xi−1, xi ) and define the composite
quadrature rule by∫ b

a
f (x)dx ≈ CQ(f )([xi−1, xi ]

m
i=1) :=

m∑
i=1

Q[f ](xi−1, xi )
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Composite Simpson’s rule
Idea. Split [a, b] into m subintervals, do Simpson’s rule on each.
⇒ we also need the mid points. So:

Divide [a, b] into 2m equal intervals of length h = (b − a)/(2m). Let
xj = a+ jh, i = 0, · · · , 2m, and apply Simpson’s rule on each subinterval
[x2j , x2j+2] (with nodes x2j , x2j+1, x2j+2). The result is:∫ b

a
f (x)dx =

m−1∑
j=0

∫ x2j+2

x2j

f (x)dx ≈ Sm(a, b) :=
m−1∑
j=0

S(x2j , x2j+2)

Plugging in all small Simpson’s rules we get

Sm(a, b) :=
m−1∑
j=0

h

3

(
f (x2j) + 4f (x2j+1) + f (x2j+2)

)

=
h

3

(
f (x0) + 4

m−1∑
j=0

f (x2j+1) + 2
m−1∑
j=1

f (x2j) + f (x2m)

)
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Numerical Example for Composite Simpson’s rule
We again consider f (x) = cos

(
πx
2

)
.

Intuitively.
If we spend more points, the error should decrease.
But How much does it decrease – or in other words – how fast?

From the experiment we observe that the error is reduced by a factor
of approx. 0.0625 = 1

16 when doubling the number of subintervals m.

Two interpretations:
In number of points m. If we write Em(a, b) = |I (a, b)− Sm(a, b)|, then

1
16

Em(a, b) ≈ E2m(a, b)

In step size h = b−a
m . We have 16 = 24 so the error has to behave like a

constant C times h4, since

C
(h
2
)4

=
C

24 h
4 =

C

16
h4

In the following, we will prove that this is in fact what can be expected.
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Towards an error estimate for composite Simpson’s
From the error of Simpson’s rule: For f ∈ C 4[a, b] there is a ξ ∈ (a, b)
such that

I [f ]− S [f ] = −(b − a)5

2880
f (4)(ξ).

Remember. If f (x) = p(x) ∈ P3 then f (4) ≡ 0 ⇒ Degree of exactness 3.

Approach. Apply this to every “small” Simpson’s rule in the composite
Simpson’s rule∫ b

a
f (x)dx − Sm(a, b) =

m−1∑
j=0

(∫ x2j+2

x2j

f (x)dx − h

3

(
f (x2j) + 4f (x2j+1) + f (x2j+2)

))

=
m−1∑
j=0

−(2h)5

2880
f (4)(ξj)

where ξj ∈ (x2j , x2j+2). Using the generalized mean value theorem

there is a ξ ∈ (a, b) such that
m−1∑
j=0

f (4)(ξj) = mf (4)(ξ).
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An error estimate for composite Simpson’s rule
By using 2mh = (b − a) in the previous idea we obtain the following
theorem.

Theorem. Let f ∈ C 4[a, b]. Then there esists a ξ ∈ (a, b) such that∫ b

a
f (x)dx − Sm(a, b) = −(b − a)h4

180
f (4)(ξ).

For our ongoing numerical example f (x) = cos
(
πx
2

)
we have

f (4)(x) = π4

16 cos
(
πx
2

)
which is less than π4

16 and we get

|I (a, b)− Sm(a, b)| ≤
1

180

(
1

2m

)4 (π
2

)4
=

π4

46080
1
m4
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Interlude: Convergence of h-dependent approximations
Let X be an exact solution and X (h) some numerical solution
depending on h. Consider the error e(h) = ∥X − X (h)∥.

The approximation X (h) converges to X if lim
h→0

e(h) = 0.

The order of approximation is p if there exists a constantM such that

e(h) ≤ Mhp

In Big-O notation we simply write

e(h) = O(hp) as h → 0.

Usually we are interested in p not that much inM .
We get a measure of the quality of convergence.
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Interlude: Convergence of h-dependent approximations
To numerically find p (approximately) in e(h) = Chp: Take some H ∈ R.
1. Run Experiments Compute e(hk) with hk =

H

2k
, k = 0, 1, 2, . . .

2. Compare two succesive runsWe can compute

e(hk+1) ≈ Chpk+1
e(hk) ≈ Chpk

⇒ e(hk+1)

e(hk)
≈
(
hk+1

hk

)p

⇒ p ≈ log (e(hk+1)/e(hk))

log (hk+1/hk)

and maybe test this over several k .

We call this Experimental order of convergence (EOC) at refinement
level k

EOC(k) ≈ log (e(hk+1)/e(hk))

log (hk+1/hk)
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Error or convergence plot

Alternatively: Since e(h) ≈ Chp we can obtain p
using the data (hk , e(hk)) in a plot,
where both axes are logarithmic (log-log-plot) since then

y = log e(h) ≈ logC + p log h = a+ px

And we see the p as the slope of this line.
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Error estimate in practice I
Goal. Estimate when my error is small enough, so I do not have to
increase m anymore.

In practice, an error estimate like we had for Sm, i. e.∣∣∣∣I (a, b)− Sm(a, b)

∣∣∣∣ ≤ (b − a)h4

180
f (4)(ξ).

is complicated, since we do not know ξ.

We could take the maximum of f (4)(x) on (a, b), i. e. use a bound like∣∣∣∣I (a, b)− Sm(a, b)

∣∣∣∣ ≤ (b − a)h4

180
∥f (4)∥∞.

as an upper bound, but this is usually a large over-estimation.

Question. How can we find an estimate of the error without any extra
analytical calculations?
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Error estimate in practice II
Idea. Let [a, b] is chosen so small, that f (4)(x) can be assumed to be
constant and set C = −f (4)(x)/2880 (constant⇒ any x ∈ (a, b)).
We further set
▶ H = b − a

▶ S1(a, b) for (m = 1, classical) Simpson’s rule
▶ S2(a, b) for the composite (2 intervals) Simpson’s rule

Then errors of the two approximations are then given by

I (a, b)− S1(a, b) ≈ CH5 and I (a, b)− S2(a, b) ≈ 2C
(
H

2

)5

=
2CH5

32
.

Their difference is

S2(a, b)− S1(a, b) ≈
15
16

CH5 ⇒ CH5 ≈ 16
15

(S2(a, b)− S1(a, b)).

We obtain an expression for CH5.
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Error estimate in practice III
Plugging the term for CH5 from

S2(a, b)− S1(a, b) ≈
15
16

CH5 ⇒ CH5 ≈ 16
15

(S2(a, b)− S1(a, b)).

into the errors, we obtain

E1(a, b) = I (a, b)− S1(a, b) ≈
16
15

( S2(a, b)− S1(a, b) ) = E1(a, b),

E2(a, b) = I (a, b)− S2(a, b) ≈
1
15

( S2(a, b)− S1(a, b) ) = E2(a, b).

We obtain an error estimate for both S1(a, b) and S2(a, b), since we
know that they are related by a factor 1

16 already.

Even better. We get a third, even better approximation for free:

I (a, b) ≈ S2(a, b) + E2(a, b) =
16
15

S2(a, b)−
1
15

S1(a, b)
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Example.
Find an approximation to the integral

∫ 1

0
cos(x)dx = sin(1) by composite

Simpson’s rules Sm, m = 1, 2 over one and two subintervals.
Find the error estimates Em, m = 1, 2 and compare with the exact errors
Em,m = 1, 2.

Exercise. As a homework do the same for Runge’s function (prepared
in the notebook already) for the intervals [0, 8], [0, 1], [4, 8], [0, 0.1]. What
you should observe
1. on [0, 8]: The error is large, and the error estimate is significantly

smaller than the real error (the error is under-estimated).
2. on [0, 1]: As for the interval [0, 8].
3. on [4, 8]: Small error, and a reasonable error estimate.
4. on [0, 0.1]: Similar to [0, 8] but the approximate error is worse

Why is this so and how can we deal with this?
It seems we need smaller intervals near x = 0.
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Adaptive Integration
Idea. Instead of equispaced points, use a basic function, for example
SimpsonBasic, that returns a quadrature Q(a, b) and an error estimate
E(a, b) to partition the interval

a = X0 < X1 < · · · < Xm = b

such that (automatically) for any k = 0, . . . ,m − 1 we have

|E(Xk ,Xk+1)| ≤
Xk+1 − Xk

b − a
Tol

where Tol is a given tolerance (by the user).

This way the accumulated error is

E(a, b) ≈
m−1∑
j=0

E(Xk ,Xk+1) ≤ Tol.
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Algorithm. Adaptive quadrature

Given f , a, b and a user defined tolerance Tol.

1. Calculate Q(a, b) and E(a, b).
2. If |E(a, b)| ≤ Tol

▶ Accept the result, return Q(a, b) + E(a, b) as an approximation to
I (a, b).

else
▶ set c = (a+ b)/2, and repeat the process on each of the subintervals

[a, c] and [c , b], with tolerance Tol/2.
3. Sum up the accepted results from each subinterval.
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Newton-Côtes Formulae

Newton-Côtes Formulae are quadratures based on polynomial
interpolation with the equispaced nodes in [a, b], ı.e.

xk = x0 + kh, k = 0, . . . , n.

A Newton-Côtes formula is called

▶ closed if x0 = a and xn = b and we obtain h = b−a
n , n ≥ 1

▶ open if x0 = a+ h and xn = b − h and we have h = b−a
n+2 n ≥ 0

Known. Midpoint (open, n = 0), Trapezoidal (closed, n = 1), and
Simpson (closed, n = 2).
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Properties of Newton-Côtes Formulae

For a closed Newton-Côtes formula with x0, . . . , xn as nodes

▶ degree of exactness is n
▶ for even n (e. g. Simpson): degree of exactness n + 1

Obs for n ≥ 8: negative weights wi occur.
⇒ There exist f ≥ 0 everywhere such that these rules (n ≥ 8) yield

Q[f ] < 0. They are also not numerically stable
▶ since n = 6 and n = 7 have same degree of exactness
⇒ the rules with n ≤ 6 are used in practice.

For open Newton-Côtes formulae negative weights appear for n ≥ 2, so
only the mid point rule is commonly used.
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Gauß-Quadrature
Remember. The Gauß-Legendre quadrature with n = 1 (2 points) had
degree of exactness 3 = 2n + 1!

A Gauß quadrature uses orthogonal polynomials p0, . . . , pn, pj ∈ Pj ,
(constructed with Gram-Schmidt) such that all roots are in [a, b] and
uses these roots as nodes.
A Gauß quadrature with n + 1 nodes x0, . . . , xn has degree of exactness
2n + 1. This is the best you can get.

Example. Gauss-Legendre quadrature. For the standard interval [−1, 1]
choose the nodes as the zeros of the polynomial of degree n:

Ln(t) =
dn

dtn
(t2 − 1)n.

and orthogonality means∫ 1

−1
Li (t)Lj(t)dt = 0 if i ̸= j

Special case: n = 1: mid point rule.


