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Introduction.
We know that quadratic equations of the form

ax®> +bx+c=0

: —b++Vd?—4
have the roots (or solutions) r* = \/27‘%
a

More generally, for a given function f we want to consider the equation
f(x) =0. (1)
A solution x* of (1) is called a root to the equation.

Challenge. In many applications, we encounter equations for which we
do not have a simple solution formula as for quadratic functions.

In fact, an analytical solution might not even exist!

= Develop numerical techniques to solve (1).




Scalar and systems of equations

We consider scalar equations first, i.e. f: R — R, or with just one
equation and variable, for example

x34+x?—3x=3.
Later we will also consider systems of equations, for example

xe¥ =1,
—x? + y=1L
We can write this also as a functions f: R” — R”, which in this example
would be n =2 and

xe¥ —1

f(x,y) = (—x2 by 1) and we want to solve  f(x,y) = <8>




Scalar equations
Let f: [a, b] — R be a continuous function on some interval [a, b].

Goal. Find a zero or root of f.
Let's get an intuition by plotting the function (try yourself in Python).
For example f(x) = x3 + x?> — 3x — 3 from last slide looks like

— f(x) ”

/ N

= three real roots on [ 2,2]. ertlng fasf(x)=(x+1)(x*>—3)




Existence and uniqueness of solutions

Theorem. Let f € CJa, b] be given.

1. if f(a) and f(b) are of different sign, then there exists at lesat one
r € (a,b) such that f(r) =0
Trick. the condition of different sign is f(a)f(b) < 0 in short.

2. The solution is unique if f € C![a, b] and f/(x) < 0 or f'(x) > 0 for all
x € (a, b).




Bisection method
First part of the theorem already provides a very intuitive algorithm:
Divide [a, b] into two parts [a, c], [c, b], check in which half the zero is and

continue there.

Algorithm.
Input a function f and an interval, such that f(a)f(b) <0
1. Set a® = 5, b = p
2. Fork=0,1,2,...
o 2B
> Setthe nex2t interval to
(atkD)_ pe1] — EQREQ) ?f F(ak)F(cW) <0
[c®) bt if F(ck)F(bK)) < 0.

Idea. c(¥) approximates the root r, note that |c(¥) — | < 89-a%

We can stop if b(k);’(k) is small enough or if f(c(¥)) is zero.




Bisection method - exercises and summary

Exercises.
» Choose appropriate intervals and find the other two roots of f
» Compute the solution(s) of x? + sin(x) — 0.5 = 0 using the bisection
method

» Given the interval [1.5,2]. How many iterations are required to
guarantee that the error |c(¥) — r|is less than 10~*

Summary.
The bisection method is very robust but not particularly fast.




Fix point iterations

A major class of iteration schemes are the so-called fix point iterations.

General Idea. Given an equation f(x) = 0 with root r.
Rewrite the equation

f(x)=0

to a a fix point form x = g(x), i. e. construct a function g such that the
root x* of f is a fixed point of g, that is x* satisfies

x* = g(x*).
Algorithm.

Input Given a function g and a starting value x(©)
1. For k=0,1,2,... compute

XU = g(x(F),




Example. Fixed point equation

We rewrite

3 2
f(x)=x>+x>-3x-3=0 to x= %M = g(x).
Interpretation: Fixed points are intersections of g(x) with y = x.
y
— g(x) 2|
_y = X
1 .
2 1

T




Example. Fixed point equation (cont.)
Exercise. Repeat the experiment with x(%) = 1.5 and

2 2
—x“+3x+3 34+ 3x — x
l)= I3 g =2 a = ﬁ

Interpretation: Fixed points are intersections of g(x) with y = x.




B Existence and uniqueness for fix point iteration
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We can adapt the previous Theorem on the equation f(x) = x — g(x) =0

Theorem. Let g € CJa, b]
1. ifa < g(x) < bforall x € (a, b) then g has at least one fixed point x*

2. if g € Cl[a, b] and |g’(x)| < 1 for all x € [a, b] then the fixed point x*
is unique.

We write the assumption a < g(x) < bfor all x € [a, b]
as g([a, b]) C (a, b).



We denote the error after k iterations as e(k) = x* — x(k),

B Convergence of fix the point iteration

The iteration converges if e(¥) — 0 as k — oc.
Under which conditions is this the case?

Here's a trick we will use: For any k we have

xK 1) = g(x(K), the iterations
x* = g(x*) the fixed point.

Now use the last Theorem from the preliminaries (that generalised
Rolle’s theorem)

D] =[x —xU| = |g(x*) —g(x)| = [/ (¢x)] - Ix* = x| = [g/(¢)] - e

where &, is some unknown value between x(*) (known) and x*
(unknown).




B The fix point theorem

Theorem. If there is an interval [a, b] such that g € C1[a, b],
g([a, b]) C (a, b) and there exist a positive constant L < 1 such that
lg'(x)| < L < 1forall x € [a, b], then

> g has a unique fixed point r in (a, b).

» The fixed point iterations x(k*1) = g(x(k)) converges towards x* for
all starting values x(©) ¢ [a, b].

The property g([a, b]) C (a, b) guarantees that if x(9) € [a, b] then
x(k) € (a,b), for k =1,2,. ...

The condition |g’(x)| < L < 1 guarantees convergence towards the
unique fixed point x*, since

e < L]e®] = e < k@] 50 ask — oo

since LX — 0 as k — oo due to L < 1 (also called linear convergence).



B Example. The fix point interation (cont. Il)

x34+x2-3
gX)=—5—, g'(x) 3

Exercise. How large can we make [—0.7, 1.3] still having convergence?
Check the same conditions for g», g3, gs.




Newton’'s method

Since a small g’(x*) is preferable and we can choose g
= can we choose g such that g’(x*) = 0?

We use x(K) = x* — e(k) and a Taylor expansion (around x*)
e(k+1) — x* — X(k+1) — g(x*) g( (k) ) ( ) - (X* o e(k))
. 1
= —g/(x*)elM) + §g”(§k)(e(k))

Let's choose g’(x*) = 0 and assume that we have a constant M such
that |g”(x)|/2 < M. Then

’e(k-ﬁ—l)‘ < M’e(k)‘2

Also known as quadratic convergence.




How to find our favourite fix point equation.
B Question. Given an equation
f(x)=0

with an unknown solution x*.
Can we find a g with fixed point x* and g’(x*) = 0?
Idea. Note that for any h(x) we have due to f(x*) = 0 that

g(x) = x — h(x)f(x)
has a fixed point x*. The derivate reads
g(x) =1 = H(x)f(x) = h(x)f'(x)
and at the fixed point

g'(x") =1 —h(x")f'(x").

Choose h(x) = 1/f'(x) we achieve g’(x*) = 0.



B Newton’s method. Algorithm

NTNU

Algorithm.
Input a function f, its derivative f/, and a start point x(®.
1. For k=0,1,2,... compute

()
) o FOEY)
f/(x(k))



Error analysis
We constructed the method to give quadratic convergence

|e(k+1)| < M‘e(k) 2’

where elk) = x* — x(k),
But under which conditions can we say something about the size of M?

Let's compare the Taylor series around x* with Newton’s method
e OO 1 SN xRy L L f (k)2 :
0= F(x')) 4+ F/(xV)(x* — x\") + Ef (&) (x* — x\")= (Taylor series)
0 = F(xK) 4+ F/(xK) (xE+D) — x(k)), (Newton’s method)

where &, is between x* and x(¥). Subtracting both yields

P D)L g (xR =0 = et = LIS (2
2 2 f1(x(k))

= we need f'(x(K) £ 0, f € C?[a, b] and x( sufficiently close to x*.



Convergence of Newton’'s method
Theorem. Assume that the function f has a root x*, and let
Is = [x* — 0, x* + §] for some 6 > 0.
Assume further that
> fc Cz(/g).

» Thereisa M > 0 such that
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f(y)
< .
700 | = 2M, forall x,y € Is

In this case, Newton’s method converges quadratically,
|e(k+1)| < M|e(k)|2

for all starting values satisfying [x(®) — x*| < min{1/M,d}.

Exercises.
> Repeat the example with different x(%) to find the two other roots.

» Verify quadratic convergence numerically (remember the EOC!).
> Solve x(1 — cos(x)) = 0, both by the bisection and Newton’s method,

x(9 = 1. What difference do you observe?




Systems of equations

Instead of one function f with one variable x we now consider

Systems of nonlinear equations.

fi(x1,x2,...,xp) =0
f2(X1,X2, . 7Xn) = 0
fo(x1, X2, ..., xp) =0

We can write this in short as

where f: R" — R".




Example.
B Example. Consider the two equations
1

3
— Z =0
X y—|—4

xX24+y?—1=0
Interpretation.
Rewrite first equation to y = x3 + + = solutions lie on this graph.
Second equation means 1 = x? + y? = point with distance 1 from origin

—y=x341




Towards Newton’s method for systems of equations |
Idea. Extend fixed point iterations to systems of equations.
We concentrate on Newton's method and the case n = 2:

f(x,y)=0
g(x,y)=0
to avoid getting lost in indices.

Notation. We denote a solution (root) to these by r = (x*, y*)T.
Let x = (%, y)T that approximates r.

= Search for a better approximation by linearizing f(x) = 0.
In other words: use the multivariate Taylor expansion around x

A of . . . of . . .
f(X,y):f(X,y)+a(X,y)(X—X)—F@(X,y)(y—y)—F

_ A A ag A A A 6g A A A
g(X,_)/) _g(Xay)+ 8X(X7y)(X_X)+ ay(xay)(y_Y)+

where we omit higher order terms (in “..."), which are small for x ~ x.




Towards Newton’s method for systems of equations Il
B Idea. Ignore the higher order terms and solve

f(X,y)‘Fa(X,y)( *X)‘i’aiy(x,y)(}/*y)zo
g(x,9)+ 5(X,y)( - %)+ @(X,y)(y -y)=0

for x and y as a better approximation (or precise: next iterate).

More compact we can write
f(x) + J(x)(x —x) =0,
where J(x) denotes the Jacobian of f given by

Jx) = (gi(x,y) gg(x,y)>

0,
875()(7)/) W(Xay)




Newton’s method for systems of equations

Algorithm.
Input A function f(x), its Jacobian J(x) and a starting value x(©.

1. Fork=0,1,2, ...
1.1 Solve the linear system J(x()AK) = —F(x(¥))
1.2 Set x(kt1) = x(k) L A(K)

Note. This can be generalized to n equations with n unknowns, where
the Jacobian reads

f () Z;(x) )
S - fo) 9% (x) ()
Sh(x) e(x) - 352()




Example.

To solve our example from before
1
flxy) =x* =y + 3 =0

gx,y) =x*+y*~1=0

3x? —1
= (5 o)

Starting in x(© = (1,1)T we get

we need its Jacobian

o
- X2 :x13+%
—x12—|—x22 =1
[ ] X(O)
e 4B e




B Further exercises for you to try
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» Search for the solution of the Example in the third quadrant by
changing the initial value x(©),

» Apply Newton's method to the system

xe¥ =1

—x24y=1

using x(© = y(©) — o,



Error analysis for multivariate Newton’s method

Error and convergence analysis for the multivariate case is beyond the
scope of this lecture.

Summary. If f is sufficiently differentiable, and there is a solution x* of
the system f(x) = 0 with J(x*) nonsingular, then the Newton iterations
will converge quadratically towards x* for all x() sufficiently close to x*.




Outlook. Multivariate Newton’s method

vVvyVvYyVvyYyvyy

finding solutions in the multivariate case is hard
especially choosing a good starting point x(©) is
systems of equations usually have multiple solutions
how do you find the one you want?

for large n: Evaluating the Jacobian J(x(¥)) is expensive

there exist efficient versions - including slow, but robust algorithms
to find x(9).



