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Introduction.
We know that quadratic equations of the form

ax2 + bx + c = 0

have the roots (or solutions) r± =
−b ±

√
d2 − 4ac
2a

More generally, for a given function f we want to consider the equation

f (x) = 0. (1)

A solution x∗ of (1) is called a root to the equation.

Challenge. In many applications, we encounter equations for which we
do not have a simple solution formula as for quadratic functions.
In fact, an analytical solution might not even exist!
⇒ Develop numerical techniques to solve (1).
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Scalar and systems of equations
We consider scalar equations first, i. e. f : R → R, or with just one
equation and variable, for example

x3 + x2 − 3x = 3.

Later we will also consider systems of equations, for example

xey = 1,

−x2 + y = 1.

We can write this also as a functions f : Rn → Rn, which in this example
would be n = 2 and

f (x , y) =

(
xey − 1

−x2 + y − 1

)
and we want to solve f (x , y) =

(
0
0

)
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Scalar equations
Let f : [a, b] → R be a continuous function on some interval [a, b].

Goal. Find a zero or root of f .
Let’s get an intuition by plotting the function (try yourself in Python).
For example f (x) = x3 + x2 − 3x − 3 from last slide looks like

−2 −1 1 2

−4

−2

2

x

y
f (x)

⇒ three real roots on [−2, 2]. Writing f as f (x) = (x + 1)(x2 − 3)
⇒ x∗1 = −1, x∗2,3 = ±

√
3.
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Existence and uniqueness of solutions

Theorem. Let f ∈ C [a, b] be given.

1. if f (a) and f (b) are of different sign, then there exists at lesat one
r ∈ (a, b) such that f (r) = 0
Trick. the condition of different sign is f (a)f (b) < 0 in short.

2. The solution is unique if f ∈ C 1[a, b] and f ′(x) < 0 or f ′(x) > 0 for all
x ∈ (a, b).
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Bisection method
First part of the theorem already provides a very intuitive algorithm:
Divide [a, b] into two parts [a, c], [c , b], check in which half the zero is and
continue there.

Algorithm.
Input a function f and an interval, such that f (a)f (b) < 0

1. Set a(0) = a, b(0) = b

2. For k = 0, 1, 2, . . .

▶ c(k) =
a(k) + b(k)

2
▶ Set the next interval to

[a(k+1), b(k+1)] =

{
[a(k), c(k)] if f (a(k))f (c(k)) < 0
[c(k), b(k)] if f (c(k))f (b(k)) < 0.

Idea. c(k) approximates the root r , note that |c(k) − r | ≤ b(k)−a(k)

2

We can stop if b(k)−a(k)

2 is small enough or if f (c(k)) is zero.
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Bisection method – exercises and summary

Exercises.
▶ Choose appropriate intervals and find the other two roots of f
▶ Compute the solution(s) of x2 + sin(x)− 0.5 = 0 using the bisection

method
▶ Given the interval [1.5, 2]. How many iterations are required to

guarantee that the error |c(k) − r | is less than 10−4

Summary.
The bisection method is very robust but not particularly fast.
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Fix point iterations
A major class of iteration schemes are the so-called fix point iterations.

General Idea. Given an equation f (x) = 0 with root r .
Rewrite the equation

f (x) = 0

to a a fix point form x = g(x), i. e. construct a function g such that the
root x∗ of f is a fixed point of g , that is x∗ satisfies

x∗ = g(x∗).

Algorithm.
Input Given a function g and a starting value x (0)

1. For k = 0, 1, 2, . . . compute

x (k+1) = g(x (k)).
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Example. Fixed point equation
We rewrite

f (x) = x3 + x2 − 3x − 3 = 0 to x =
x3 + x2 + 3

3
= g(x).

Interpretation: Fixed points are intersections of g(x) with y = x .

−2 −1 1 2

−2

−1

1

2

x

y
g(x)
y = x
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Example. Fixed point equation (cont.)
Exercise. Repeat the experiment with x (0) = 1.5 and

g2(x) =
−x2 + 3x + 3

x2 , g3(x) =
3
√

3 + 3x − x2, g4(x) =

√
3 + 3x − x2

x

Interpretation: Fixed points are intersections of g(x) with y = x .

−2 −1 1 2

−2

−1

1

2

x

y
g(x)

g2(x)

g3(x)

g4(x)
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Existence and uniqueness for fix point iteration

We can adapt the previous Theorem on the equation f (x) = x − g(x) = 0

Theorem. Let g ∈ C [a, b]

1. if a < g(x) < b for all x ∈ (a, b) then g has at least one fixed point x∗

2. if g ∈ C 1[a, b] and |g ′(x)| < 1 for all x ∈ [a, b] then the fixed point x∗
is unique.

We write the assumption a < g(x) < b for all x ∈ [a, b]
as g([a, b]) ⊂ (a, b).
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Convergence of fix the point iteration
We denote the error after k iterations as e(k) = x∗ − x (k).

The iteration converges if e(k) → 0 as k → ∞.
Under which conditions is this the case?

Here’s a trick we will use: For any k we have

x (k+1) = g(x (k)), the iterations
x∗ = g(x∗) the fixed point.

Now use the last Theorem from the preliminaries (that generalised
Rolle’s theorem)

|e(k+1)| = |x∗−x (k+1)| = |g(x∗)−g(x (k))| = |g ′(ξk)| · |x∗−x (k)| = |g ′(ξk)| · |ek |

where ξk is some unknown value between x (k) (known) and x∗

(unknown).
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The fix point theorem
Theorem. If there is an interval [a, b] such that g ∈ C 1[a, b],
g([a, b]) ⊂ (a, b) and there exist a positive constant L < 1 such that
|g ′(x)| ≤ L < 1 for all x ∈ [a, b], then

▶ g has a unique fixed point r in (a, b).
▶ The fixed point iterations x (k+1) = g(x (k)) converges towards x∗ for

all starting values x (0) ∈ [a, b].

The property g([a, b]) ⊂ (a, b) guarantees that if x (0) ∈ [a, b] then
x (k) ∈ (a, b), for k = 1, 2, . . ..
The condition |g ′(x)| ≤ L < 1 guarantees convergence towards the
unique fixed point x∗, since

|e(k+1)| ≤ L|e(k)| ⇒ |e(k)| ≤ Lk |e(0)| → 0 as k → ∞.

since Lk → 0 as k → ∞ due to L < 1 (also called linear convergence).
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Example. The fix point interation (cont. II)

g(x) =
x3 + x2 − 3

3
, g ′(x) =

3x2 + 2x
3

−2 −1 1 2

−2

2

x

y

g(x)

g ′(x)

Exercise. How large can we make [−0.7, 1.3] still having convergence?
Check the same conditions for g2, g3, g4.



15

Newton’s method

Since a small g ′(x∗) is preferable and we can choose g
⇒ can we choose g such that g ′(x∗) = 0?

We use x (k) = x∗ − e(k) and a Taylor expansion (around x∗)

e(k+1) = x∗ − x (k+1) = g(x∗)− g(x (k)) = g(x∗)− g(x∗ − e(k))

= −g ′(x∗)e(k) +
1
2
g ′′(ξk)

(
e(k)

)2
Let’s choose g ′(x∗) = 0 and assume that we have a constantM such
that |g ′′(x)|/2 ≤ M . Then

|e(k+1)| ≤ M|e(k)|2

Also known as quadratic convergence.
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How to find our favourite fix point equation.
Question. Given an equation

f (x) = 0

with an unknown solution x∗.
Can we find a g with fixed point x∗ and g ′(x∗) = 0?
Idea. Note that for any h(x) we have due to f (x∗) = 0 that

g(x) = x − h(x)f (x)

has a fixed point x∗. The derivate reads

g(x) = 1 − h′(x)f (x)− h(x)f ′(x)

and at the fixed point

g ′(x∗) = 1 − h(x∗)f ′(x∗).

Choose h(x) = 1/f ′(x) we achieve g ′(x∗) = 0.
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Newton’s method. Algorithm

Algorithm.
Input a function f , its derivative f ′, and a start point x (0).

1. For k = 0, 1, 2, . . . compute

x (k+1) = x (k) − f (x (k))

f ′(x (k))
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Error analysis
We constructed the method to give quadratic convergence

|e(k+1)| ≤ M
∣∣e(k)∣∣2,

where e(k) = x∗ − x (k).
But under which conditions can we say something about the size ofM?

Let’s compare the Taylor series around x∗ with Newton’s method

0 = f (x (k)) + f ′(x (k))(x∗ − x (k)) +
1
2
f ′′(ξk)(x

∗ − x (k))2 (Taylor series)

0 = f (x (k)) + f ′(x (k))(x (k+1) − x (k)), (Newton’s method)

where ξk is between x∗ and x (k). Subtracting both yields

f ′(x (k))(x∗−x (k+1))+
1
2
f ′′(ξk)(x

∗−x (k))2 = 0 ⇒ e(k+1) = −1
2
f ′′(ξk)

f ′(x (k))

(
e(k)

)2
⇒ we need f ′(x (k)) ̸= 0, f ∈ C 2[a, b] and x (0) sufficiently close to x∗.
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Convergence of Newton’s method
Theorem. Assume that the function f has a root x∗, and let
Iδ = [x∗ − δ, x∗ + δ] for some δ > 0.
Assume further that
▶ f ∈ C 2(Iδ).
▶ There is aM > 0 such that

∣∣∣∣ f ′′(y)f ′(x)

∣∣∣∣ ≤ 2M, for all x , y ∈ Iδ.

In this case, Newton’s method converges quadratically,
|e(k+1)| ≤ M|e(k)|2

for all starting values satisfying |x (0) − x∗| ≤ min{1/M, δ}.

Exercises.
▶ Repeat the example with different x (0) to find the two other roots.
▶ Verify quadratic convergence numerically (remember the EOC!).
▶ Solve x(1− cos(x)) = 0, both by the bisection and Newton’s method,

x (0) = 1. What difference do you observe?
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Systems of equations
Instead of one function f with one variable x we now consider

Systems of nonlinear equations.

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

We can write this in short as

f (x) = 0,

where f : Rn → Rn.
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Example.
Example. Consider the two equations

x3 − y +
1
4
= 0

x2 + y2 − 1 = 0
Interpretation.
Rewrite first equation to y = x3 + 1

4 ⇒ solutions lie on this graph.
Second equation means 1 = x2 + y2 ⇒ point with distance 1 from origin

−2 −1 1 2

−1

1

x

y
y = x3 + 1

4
x2 + y2 = 1
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Towards Newton’s method for systems of equations I
Idea. Extend fixed point iterations to systems of equations.
We concentrate on Newton’s method and the case n = 2:

f (x , y) = 0
g(x , y) = 0

to avoid getting lost in indices.

Notation. We denote a solution (root) to these by r = (x∗, y∗)T.
Let x̂ = (x̂ , ŷ)T that approximates r .

⇒ Search for a better approximation by linearizing f (x) = 0.
In other words: use the multivariate Taylor expansion around x̂

f (x , y) = f (x̂ , ŷ) +
∂f

∂x
(x̂ , ŷ)(x − x̂) +

∂f

∂y
(x̂ , ŷ)(y − ŷ) + . . .

g(x , y) = g(x̂ , ŷ) +
∂g

∂x
(x̂ , ŷ)(x − x̂) +

∂g

∂y
(x̂ , ŷ)(y − ŷ) + . . .

where we omit higher order terms (in “...”), which are small for x ≈ x̂ .
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Towards Newton’s method for systems of equations II
Idea. Ignore the higher order terms and solve

f (x̂ , ŷ) +
∂f

∂x
(x̂ , ŷ)(x − x̂) +

∂f

∂y
(x̂ , ŷ)(y − ŷ) = 0

g(x̂ , ŷ) +
∂g

∂x
(x̂ , ŷ)(x − x̂) +

∂g

∂y
(x̂ , ŷ)(y − ŷ) = 0

for x and y as a better approximation (or precise: next iterate).

More compact we can write

f(x̂) + J(x̂)(x − x̂) = 0,

where J(x) denotes the Jacobian of f given by

J(x) =

(
∂f
∂x (x , y)

∂f
∂y (x , y)

∂g
∂x (x , y)

∂g
∂y (x , y)

)
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Newton’s method for systems of equations
Algorithm.

Input A function f (x), its Jacobian J(x) and a starting value x (0).
1. For k = 0, 1, 2, ...

1.1 Solve the linear system J(x (k))∆(k) = −f (x (k))
1.2 Set x (k+1) = x (k) +∆(k)

Note. This can be generalized to n equations with n unknowns, where
the Jacobian reads

J(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

... . . . ...
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)
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Example.
To solve our example from before

f (x , y) = x3 − y +
1
4
= 0

g(x , y) = x2 + y2 − 1 = 0

we need its Jacobian
J(x , y) =

(
3x2 −1
2x 2y

)
Starting in x (0) = (1, 1)T we get

−2 −1 1 2

−1

1

x

y
x2 = x3

1 + 1
4

x2
1 + x2

2 = 1
x (0)

x (5)
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Further exercises for you to try

▶ Search for the solution of the Example in the third quadrant by
changing the initial value x (0).

▶ Apply Newton’s method to the system

xey = 1

−x2 + y = 1

using x (0) = y (0) = 0.
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Error analysis for multivariate Newton’s method

Error and convergence analysis for the multivariate case is beyond the
scope of this lecture.

Summary. If f is sufficiently differentiable, and there is a solution x∗ of
the system f (x) = 0 with J(x∗) nonsingular, then the Newton iterations
will converge quadratically towards x∗ for all x (0) sufficiently close to x∗.
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Outlook. Multivariate Newton’s method

▶ finding solutions in the multivariate case is hard
▶ especially choosing a good starting point x (0) is
▶ systems of equations usually have multiple solutions
▶ how do you find the one you want?
▶ for large n: Evaluating the Jacobian J(x (k)) is expensive
▶ there exist efficient versions – including slow, but robust algorithms

to find x (0).


