

### TMA4125 Matematikk 4N The Laplace Transform I

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

February 8, 2022



#### Introduction.

Goal. Solve ordinary differential equations (ODEs).

Typical examples are first order ODEs of the form: Find a function y = y(t) that fulfils

$$\begin{cases} y'(t)+ay(t)=r(t), \qquad t>0 \ y(0)=K_0. \end{cases}$$

appearing for example in model grow or decay processes. A second very important example are second order ODEs of the form

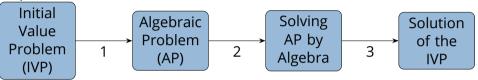
$$\begin{cases} y''(t) + ay'(t) + by(t) = r(t), & t > 0 \ y(0) = K_0, \ y'(0) = K_1. \end{cases}$$

This form is also called Initial Value Problem (IVP)



#### General scheme to solve an ODE

Solving an ODE using the Laplace transform consists of the following steps



- **1.** The given ODE is transformed into an algebraic equation, called subsidiary equation
- **2.** The subsidiary equation is solved nby purely algebraic manipulations
- **3.** The solution is transformed back, resulting in the solution of the given problem.

#### Transform - the general idea

A transform turns a given function *f* into another function.

#### Known transforms.

The derivative operator *D* takes a differentiable function  $f : [a, b] \to \mathbb{R}$ and assigns/returns a new function (Df)(x) = f'(x).

The Integral / takes a continuous function  $f: [a, b] \rightarrow \mathbb{R}$  and assigns/returns a new function

$$I[f](t) \coloneqq F(t) = \int_0^t f(x) \, \mathrm{d}x$$

The multiplication operator  $M_{\varphi}$  multiplies any given function  $f: [a, b] \to \mathbb{R}$  by a fixed function  $\varphi: [a, b] \to \mathbb{R}$  $M_{\varphi}f(t) = \varphi(t) \cdot f(t).$ 



- Definition of the Laplace transform
- Examples and properties (esp. s-shifting)
- Existence and uniqueness
- derivatives and t-shifting
- Dirac and Heaviside function
- Convolution and Integral Equations
- Solving ODEs using the Laplace transform



#### The Laplace transform

**Definition.** Let f(t) be a function that is defined for all  $t \ge 0$ . Then the Laplace transform<sup>1</sup>  $\mathcal{L}(f)$  of f is a function of a new variable s and defined by

$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

assuming that the integral exists.

**Remark.** Sine the Laplace transform is defined using an improper integral, we have to compute it by tracking the limit

$$\int_0^\infty \mathrm{e}^{-st} f(t) \, \mathrm{d}t = \lim_{T o \infty} \int_0^T \mathrm{e}^{-st} f(t) \, \mathrm{d}t.$$

We denote by  $\mathcal{L}^{-1}(F) = f$  the inverse Laplace transform that maps *F* to *f*.

<sup>1</sup>Pierre Simon Marquis de Laplace (1749-1827)

## NTNU

#### Three examples.

**Example 1.** The Laplace transform of  $f_1(t) = c$ ,  $c \in \mathbb{R}$ , for  $t \ge 0$  is

$$\mathcal{L}(c) = \int_0^\infty \mathrm{e}^{-st} f_1(t) \, \mathrm{d}t = \lim_{T \to \infty} \int_0^\infty \mathrm{e}^{-st} c \, \mathrm{d}t = \lim_{T \to \infty} \frac{c}{-s} \mathrm{e}^{-st} \Big|_0^T = \frac{c}{s} \quad \text{for } s > 0$$

**Example 2.** The Laplace transform of  $f_2(t) = e^{at}$ ,  $a \in \mathbb{R}$ , for  $t \ge 0$  is

$$\mathcal{L}(\mathrm{e}^{at}) = \int_0^\infty \mathrm{e}^{-(s-a)t} \, \mathrm{d}t = \lim_{T \to \infty} \frac{1}{a-s} \mathrm{e}^{-(s-a)t} \Big|_0^T = \frac{1}{s-a} \quad \text{for } s-a > 0$$

**Example 3.** Trying to compute the Laplace transformation of  $f_3(t) = e^{t^2}$ :

$$\mathcal{L}(\mathrm{e}^{t^2}) = \int_0^\infty \mathrm{e}^{t^2 - st} \, \mathrm{d}t$$

which does not exist, since  $e^{t^2}$  increases much faster than  $e^{-st}$  decreases. Thus  $\lim_{t\to\infty} e^{t^2-st} = \infty$  and the integral does not exist



Let f, g be two functions whose Laplace transforms exist. Let  $a, b \in \mathbb{R}$ . Then we have

$$\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t)),$$

i.e. the Laplace transform is linear.

**Proof.** Since both Laplace transforms of f and g exists, this follows directly from the linearity of integration.



#### Laplace transform of sine & cosine hyperbolicus

#### **Example 4.** Find the transforms of cosh(*at*) and sinh(*at*)

The cosine hyperbolicus reads 
$$\cosh(at) = \frac{1}{2} (e^{at} + e^{-at})$$
 and the sine hyperbolicus  $\sinh(at) = \frac{1}{2} (e^{at} - e^{-at})$ 

## NTNU

### Laplace transform of sine & cosine

Find the transforms of cos(t) and sin(t)

The cosine reads  $\cos(\omega t) = \frac{1}{2} (e^{\beta \omega t} + e^{-\beta \omega t})$  and the sine  $\sin(\omega t) = \frac{1}{2} (e^{\beta \omega t} - e^{-\beta \omega t})$ 



#### **Piecewise continuous functions**

**Definition.** A function  $f: [0, \infty) \to \mathbb{C}$  is called pieceweise continuous if f fulfils the following properties

- on every finite interval [a, b],  $0 \le a < b < \infty$  exists a partition  $a = x_0 < t_1 < \cdots, t_n = b$  such that  $f|_{(t_i, t_{i+1})}$  is continuous,  $i = 0, \ldots, n-1$
- $\lim_{t \to t_i^+} f(t) \text{ exists}$
- $\lim_{t \to t_i^-} f(t) \text{ exists}$



#### **Existence of the Laplace transform**

Idea. We have to make sure the growth is not too large

```
Theorem. Let f [0, \infty) \to \mathbb{C}
```

- be piecewise continuous
- and f be "upper bounded in growth", i. e. there exists M > 0 and a > 0 such that

 $|f(t)| \leq M \mathrm{e}^{at}$  for  $t \geq 0$ .

Then the Laplace transform  $\mathcal{L}(f) = F(s)$  is well-defined for s > a.

#### **Uniqueness of the Laplace transform**

**Theorem.** Let f and g be piecewise continuous. If

 $\mathcal{L}(f) = \mathcal{L}(g)$ 

holds, then we have

f = g

everywhere where both f and g are continuous.



### Some Laplace transforms

|   | f(t)                       | $\mathcal{L}(f)$              |   | f(t)                             | $\mathcal{L}(f)$                  |
|---|----------------------------|-------------------------------|---|----------------------------------|-----------------------------------|
| 1 | 1                          | $\frac{1}{s}$                 | 1 | $\cos(\omega t)$                 | $\frac{s}{s^2 + \omega^2}$        |
| 2 | t                          | $\frac{1}{s^2}$               | 2 | $\sin(\omega t)$                 | $\frac{\omega}{s^2+\omega^2}$     |
| 3 | $t^2$                      | $\frac{2!}{s^3}$              | 3 | $\cosh(at)$                      | $\frac{s}{s^2 - a^2}$             |
| 4 | $t^n$ , $n \in \mathbb{N}$ | $\frac{n!}{s^{n+1}}$          | 4 | $\sinh(at)$                      | $\frac{a}{s^2 - a^2}$             |
| 5 | $t^{lpha}$ , $lpha > 0$    | $\frac{\Gamma(a+1)}{s^{a+1}}$ | 1 | $\mathrm{e}^{at}\cos(\omega t)$  | $\frac{s-a}{(s-a)^2+\omega^2}$    |
| 6 | e <sup>at</sup>            | $\frac{1}{s-a}$               | 2 | $\mathrm{e}^{at} \sin(\omega t)$ | $\frac{\omega}{(s-a)^2+\omega^2}$ |



#### A short example

**Example 6**. Compute the Laplace transform of  $f(t) = 5t^3 - 2e^t$ 



### First shifting theorem, s-shifting

**Theorem.** Let f(t) be given with Laplace transform F(s) (for all s > k for some k) Then the function  $e^{at}f(t)$  has the Laplace transform F(s - a) for s - a > k.

In short the *s* shift is given by

 $\mathcal{L}(\mathrm{e}^{at}f(t))=F(s-a)$ 

Proof.



#### Example for shifting to find the inverse transform

**Example 7.** Find the inverse of the transform of (i. e. reconstruct *f* from)

$$\mathcal{L}(f) = rac{3s - 137}{s^2 + 2s + 401}$$

## NTNU

### Laplace transform and derivatives

**Theorem.** Let  $f : [0,\infty) \to \mathbb{R}$  (or  $\mathbb{C}$ ) such that

- it is differentiable
- fulfils the growth condition
- ▶ and its derivative *f*′ is piecewise continuous.

Then we have

$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0).$$

Proof.



#### Laplace transform and derivatives II

**Idea.** If *f* is "nice enough", we can generalize this easily.

**Corollary.** If all derivatives  $f, f', f'', ..., f^{(n-1)}$  fulfil the growth condition and  $f^{(n)}$  is piecewise continuous, we obtain

$$\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \ldots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

**Note.** The theorem provides that we can use the Laplace transform to ... transform

$$f^{(n)} \xrightarrow{\mathcal{L}} s^n F(s) + p(s),$$

where  $p(s) \in \mathbb{P}^{n-1}$  is a polynomial of order n-1 in s. The values of  $f, f', f'', ..., f^{(n-1)}$  at 0 is exactly what our IVP provides!

### **D** NTNU

#### Solving an IVP using the Laplace transform

Given our IVP from the very first slide

$$\begin{cases} y''(t) + ay'(t) + by(t) = r(t), & t > 0 \\ y(0) = K_0, \\ y'(0) = K_1. \end{cases}$$

Question. How can we now solve this (using Laplace)?



### Solving an IVP with Laplace – Recipe

To solve an IVP using the Laplace transform, we have to

- **1.** compute  $R(s) = \mathcal{L}(r)$  ("Input")
- **2.** set up the transfer function Q(s)
- **3.** (simple case) homogeneous initial conditions  $K_0 = K_1 = 0$
- $\Rightarrow \mathcal{L}(y) = Q(s)R(s)$  and Q only involves a and b
- 3. (general case) we have to reorganise the subsidiary equation

$$Y(s) = Q(s)R(s) + Q(s)((s+1)K_0 + K_1)$$

**4.** compute  $y(t) = L^{-1}(Y(s))$  ("Output")

**Note.** Three main steps: Laplace transform of *r*, set up subsidiary equation and rearrange, inverse Laplace transform



#### **Multiplication Theorem**

An analogue of the derivation theorem is the multiplication theorem.

**Theorem.** Let *f* be piecewise continuous

$$\mathcal{L}(tf(t)) = -\frac{\mathsf{d}}{\mathsf{d}s}\mathcal{L}(f) = -F'(s)$$

Proof.



#### **Example of the multiplcation theorem**

#### **Example.** Compute the Laplace transform of $t \sin(t)$

**Exercise.** Try yourself to compute  $\mathcal{L}(t^n \sin(t)) = \mathcal{L}(t(t^{n-1} \sin(t)))$ 



#### Laplace transform and integration

**Theorem.** Let *f* be piecewise continuous and fulfil our growth condition. ct

We define 
$$g(t) \coloneqq \int_0^{t} f(\tau) d\tau$$
  
Then it holds  
 $\mathcal{L}(g(t)) = \mathcal{L}\left(\int_0^t f(\tau) d\tau\right) = \frac{1}{s}F(s).$ 

Proof.

.



#### A known example.

We illustrate the Theorem from last slide with

$$\sin(\omega t) = a \int_0^t \cos(\omega au) \, \mathrm{d} au$$
 (since  $rac{\mathsf{d}}{\mathsf{d}t} \sin(\omega t) = \omega \cos(\omega t)$ )

To confirm 
$$\mathcal{L}(sin(\omega t)) = \frac{\omega}{s^2 + \omega^2}$$
 starting from  $\mathcal{L}(cos(\omega t)) = \frac{s}{s^2 + \omega^2}$ 

# NTNU

#### A complete Example

Solve the initial value problem

$$\begin{cases} y''(t) + y'(t) + 9y(t) = 0, \quad t > 0\\ y(0) = 0.16, \\ y'(0) = 0. \end{cases}$$