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Introduction.
Goal. Solve ordinary differential equations (ODEs).

Typical examples are first order ODEs of the form:
Find a function y = y(t) that fulfils{

y ′(t) + ay(t) = r(t), t > 0
y(0) = K0.

appearing for example in model grow or decay processes.
A second very important example are second order ODEs of the form

y ′′(t) + ay ′(t) + by(t) = r(t), t > 0
y(0) = K0,

y ′(0) = K1.

This form is also called Initial Value Problem (IVP)
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General scheme to solve an ODE

Solving an ODE using the Laplace transform consists of the following
steps

Initial
Value

Problem
(IVP)

Algebraic
Problem
(AP)

Solving
AP by
Algebra

Solution
of the
IVP1 2 3

1. The given ODE is transformed into an algebraic equation, called
subsidiary equation

2. The subsidiary equation is solved nby purely algebraic
manipulations

3. The solution is transformed back, resulting in the solution of the
given problem.
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Transform – the general idea
A transform turns a given function f into another function.

Known transforms.

The derivative operator D takes a differentiable function f : [a, b] → R
and assigns/returns a new function (Df )(x) = f ′(x).

The Integral I takes a continuous function f : [a, b] → R and
assigns/returns a new function

I [f ](t) := F (t) =

∫ t

0
f (x) dx .

The multiplication operatorMφ multiplies any given function
f : [a, b] → R by a fixed function φ : [a, b] → R

Mφf (t) = φ(t) · f (t).
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Roadmap

▶ Definition of the Laplace transform
▶ Examples and properties (esp. s-shifting)
▶ Existence and uniqueness
▶ derivatives and t-shifting
▶ Dirac and Heaviside function
▶ Convolution and Integral Equations
▶ Solving ODEs using the Laplace transform
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The Laplace transform
Definition. Let f (t) be a function that is defined for all t ≥ 0.
Then the Laplace transform1 L(f ) of f is a function of a new variable s
and defined by

F (s) = L(f ) =
∫ ∞

0
e−st f (t)dt

assuming that the integral exists.

Remark. Sine the Laplace transform is defined using an improper
integral, we have to compute it by tracking the limit∫ ∞

0
e−st f (t)dt = lim

T→∞

∫ T

0
e−st f (t)dt.

We denote by L−1(F ) = f the inverse Laplace transform
that maps F to f .

1Pierre Simon Marquis de Laplace (1749-1827)
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Three examples.
Example 1. The Laplace transform of f1(t) = c , c ∈ R, for t ≥ 0 is

L(c) =
∫ ∞

0
e−st f1(t)dt = lim

T→∞

∫ ∞

0
e−stc dt = lim

T→∞

c

−s
e−st

∣∣∣T
0
=

c

s
for s > 0

Example 2. The Laplace transform of f2(t) = eat , a ∈ R, for t ≥ 0 is

L(eat) =
∫ ∞

0
e−(s−a)t dt = lim

T→∞

1
a− s

e−(s−a)t
∣∣∣T
0
=

1
s − a

for s − a > 0

Example 3. Trying to compute the Laplace transformation of f3(t) = et2 :

L
(
et

2)
=

∫ ∞

0
et

2−st dt

which does not exist, since et2 increases much faster than e−st

decreases. Thus lim
t→∞

et
2−st = ∞ and the integral does not exist
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Linearity

Let f , g be two functions whose Laplace transforms exist. Let a, b ∈ R.
Then we have

L(af (t) + bg(t)) = aL(f (t)) + bL(g(t)),

i. e. the Laplace transform is linear.

Proof. Since both Laplace transforms of f and g exists, this follows
directly from the linearity of integration.



9

Laplace transform of sine & cosine hyperbolicus

Example 4. Find the transforms of cosh(at) and sinh(at)

The cosine hyperbolicus reads cosh(at) = 1
2

(
eat + e−at

)
and

the sine hyperbolicus sinh(at) = 1
2

(
eat − e−at

)
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Laplace transform of sine & cosine
Find the transforms of cos(t) and sin(t)

The cosine reads cos(ωt) = 1
2

(
eßωt + e−ßωt

)
and the sine

sin(ωt) = 1
2

(
eßωt − e−ßωt

)
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Piecewise continuous functions

Definition. A function f : [0,∞) → C is called pieceweise continuous if f
fulfils the following properties

▶ on every finite interval [a, b], 0 ≤ a < b < ∞ exists a partition
a = x0 < t1 < · · · , tn = b such that f

∣∣
(ti ,ti+1)

is continuous,
i = 0, . . . , n − 1

▶ lim
t→t+i

f (t) exists

▶ lim
t→t−i

f (t) exists
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Existence of the Laplace transform

Idea. We have to make sure the growth is not too large

Theorem. Let f [0,∞) → C

▶ be piecewise continuous
▶ and f be “upper bounded in growth”, i. e.

there existsM > 0 and a > 0 such that

|f (t)| ≤ Meat for t ≥ 0.

Then the Laplace transform L(f ) = F (s) is well-defined for s > a.
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Uniqueness of the Laplace transform

Theorem. Let f and g be piecewise continuous. If

L(f ) = L(g)

holds, then we have
f = g

everywhere where both f and g are continuous.
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Some Laplace transforms
f (t) L(f )

1 1
1
s

2 t
1
s2

3 t2
2!
s3

4 tn, n ∈ N
n!

sn+1

5 tα, α > 0
Γ(a+ 1)
sa+1

6 eat
1

s − a

f (t) L(f )

1 cos(ωt)
s

s2 + ω2

2 sin(ωt)
ω

s2 + ω2

3 cosh(at)
s

s2 − a2

4 sinh(at)
a

s2 − a2

1 eat cos(ωt)
s − a

(s − a)2 + ω2

2 eat sin(ωt)
ω

(s − a)2 + ω2
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A short example

Example 6. Compute the Laplace transform of f (t) = 5t3 − 2et
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First shifting theorem, s-shifting

Theorem. Let f (t) be given with Laplace transform F (s) (for all s > k for
some k)
Then the function eat f (t) has the Laplace transform F (s − a) for
s − a > k .

In short the s shift is given by

L(eat f (t)) = F (s − a)

Proof.
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Example for shifting to find the inverse transform

Example 7. Find the inverse of the transform of (i. e. reconstruct f from)

L(f ) = 3s − 137
s2 + 2s + 401
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Laplace transform and derivatives
Theorem. Let f : [0,∞) → R (or C) such that

▶ it is differentiable
▶ fulfils the growth condition
▶ and its derivative f ′ is piecewise continuous.

Then we have
L(f ′) = sL(f )− f (0).

Proof.
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Laplace transform and derivatives II

Idea. If f is “nice enough”, we can generalize this easily.

Corollary. If all derivatives f , f ′, f ′′, ..., f (n−1) fulfil the growth condition
and f (n) is piecewise continuous, we obtain

L(f (n)) = snL(f )− sn−1f (0)− sn−2f ′(0)− . . .− sf (n−2)(0)− f (n−1)(0).

Note. The theorem provides that we can use the Laplace transform to
... transform

f (n)
L−−−−→ snF (s) + p(s),

where p(s) ∈ Pn−1 is a polynomial of order n − 1 in s.
The values of f , f ′, f ′′, ..., f (n−1) at 0 is exactly what our IVP provides!
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Solving an IVP using the Laplace transform

Given our IVP from the very first slide
y ′′(t) + ay ′(t) + by(t) = r(t), t > 0
y(0) = K0,

y ′(0) = K1.

Question. How can we now solve this (using Laplace)?
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Solving an IVP with Laplace – Recipe
To solve an IVP using the Laplace transform, we have to

1. compute R(s) = L(r) (“Input”)
2. set up the transfer function Q(s)

3. (simple case) homogeneous initial conditions K0 = K1 = 0
⇒ L(y) = Q(s)R(s) and Q only involves a and b

3. (general case) we have to reorganise the subsidiary equation

Y (s) = Q(s)R(s) + Q(s)((s + 1)K0 + K1)

4. compute y(t) = L−1(Y (s)) (“Output”)

Note. Three main steps: Laplace transform of r , set up subsidiary
equation and rearrange, inverse Laplace transform
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Multiplication Theorem

An analogue of the derivation theorem is the multiplication theorem.

Theorem. Let f be piecewise continuous

L(tf (t)) = − d
dsL(f ) = −F ′(s)

Proof.
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Example of the multiplcation theorem

Example. Compute the Laplace transform of t sin(t)

Exercise. Try yourself to compute L(tn sin(t)) = L(t(tn−1 sin(t)))
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Laplace transform and integration

Theorem. Let f be piecewise continuous and fulfil our growth
condition.
We define g(t) :=

∫ t

0
f (τ)dτ

Then it holds
L(g(t)) = L

(∫ t

0
f (τ)dτ

)
=

1
s
F (s).

Proof.
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A known example.

We illustrate the Theorem from last slide with

sin(ωt) = a

∫ t

0
cos(ωτ)dτ ( since d

dt sin(ωt) = ω cos(ωt))

To confirm L(sin(ωt)) = ω

s2 + ω2 starting from L(cos(ωt)) = s

s2 + ω2
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A complete Example
Solve the initial value problem

y ′′(t) + y ′(t) + 9y(t) = 0, t > 0
y(0) = 0.16,
y ′(0) = 0.


