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An Application: Electric Current.

Source: Kreyszig, p. 3, cf. also Sec. 2.9 (p. 93)

We have an RLC circuit with
▶ resistor R (ohm)
▶ inductor L (henry)
▶ capacitor C (farad)
▶ electromotive force E (Voltage V )

With voltage drops (Spenningsavfall)

RI , LI ′ = L
d
dt I ,

Q

C
=

1
C

∫
I dt.

Goal. Current I (t) = d
dtQ (ampere) where Q is the charge (coulomb).

Kirchhoff’s Current Law: Integro-Differential equation for I (t)

LI ′ + RI +
1
C

∫
I dt = V
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The ODE for RLC circuit
Taking the derivative of

LI ′ + RI +
1
C

∫
I dt = V

yields a second order ODE

LI ′′ + RI ′ +
1
C
I = V ′

Question. (or goal for today)

a b

v0

t

V (t) ▶ What happens if the turn on a
constant voltage for some time
[a, b]?

▶ What is here V ′?



4

The Heaviside function

Definition. (Heaviside function)

u(t) := X[0,∞)(t) =

{
0 if t < 0,
1 if t ≥ 0,

1

t

u(t)

▶ For a ≥ 0:

u(t − a) = τau(t)

just shift the Heaviside function to a
a

1

t

u(t − a)
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Rectangular functions

▶ rectangle function:

rba (t) := u(t − a)− u(t − b), 0 ≤ a < b
a b

1
t

rba (t)

▶ periodic rectangular wave of period 2a

ra(t) := u(t)− 2u(t − a) + 2u(t − 2a)
− 2u(t − 3a) + . . .

= u(t) +
∞∑
k=1

(−1)k2r (k+1)a
ka (t)

a 2a 3a 4a . . .

1
t

ra(t)
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Translation and Cut-off
f (t)

1

t

f (t − a)

a

1

t

f (t − a)u(t − a)

a

1

t

▶ if we have a function f (maybe also only defined for t ≥ 0)
▶ and we want to shift it, we get f (t − a)

▶ we can “turn on” only at t = a

Example. The Laplace transform of the Heaviside function.

L
(
u(t−a)

)
=

∫ ∞

0
u(t−a)e−st dt =

∫ ∞

a
e−st dt = 1

−s
e−st

∣∣∣∣∣
t=∞

t=a

=
e−sa

s
= e−saL(1)
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The t-shift Theorem (the second shift theorem)
Remember. The s-shift Theorem: L(eat f (t)) = F (s − a)

Theorem. If f has the Laplace transform F (s), then the function

g(t) = f (t − a)u(t − a) =

{
0 for t < a

f (t − a) for t ≥ a

has the Laplace transform

L(g(t)) = L
(
f (t − a)u(t − a)

)
= e−asF (s)

We can also write this (applying L−1 on both sides)

f (t − a)u(t − a) = L−1(e−asF (s)
)
.

Proof.
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Example.
Compute the Laplace transform L(f ) of

f (t) =

{
0 for t < 1
sin(t − 1) for t ≥ 1.
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Delta “function” / Dirac “function”
Goal. Find a derivative for the Heaviside function.

Idea/Motivation. Assume we accelerate a car.
What is immediate acceleration?
What is then a(t) = d

dt v(t) = v ′(t)

10 kph

t

v(t)

Observation. For t < 0 and t > 0 we have v ′(t) = 0. What about t = 0?

Trick. Approximate!
speed vε1 , vε2 , vε3 ,...

− ε1 − ε2 − ε3 ε3 ε2 ε1

1

t

acceleration aε1 , aε2 , aε3 ,...

−ε1 −ε2 −ε3 ε3 ε2 ε1

1
2ε1

1
2ε2

1
2ε3

t
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Delta / Dirac “function” II
Let’s fix any ε, then we get ∫ ∞

−∞
aε(t)dt = 1

independent of ε!

We observe further

▶ the support of aε(t) is an interval of length 2ϵ and gets smaller and
smaller for ϵ → 0

▶ We know the minimal (0) and maximnal function value.

max
t∈R

|a′ε(t)| =
1
2ε

Idea. Taking the limit ϵ → 0 we obtain a “generalized” function δ(t)
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Delta / Dirac “function” III
Taking the limit ϵ → 0 we obtain a “generalized” function δ(t) which
fulfills

1. δ(t) =

{
∞ for x = 0
0 for x ̸= 0

2.
∫ ∞

−∞
δ(t)dt = 1

3. intuitively: The derivative of the Heaviside function is u′(t) = δ(t).

This is called (often) Dirac or delta “function”.

Obs. From Math 2 we know that δ(t) can not be a normal function,
since its Riemann integral is zero.
So do we know always have to keep the whole construction via aε(t) in
mind? No.
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Properties of the Delta “function”

If we look at ∫ ∞

−∞
f (t)aε(t)dt =

1
2ε

∫ ε

−ε
f (t)dt ε→0−−−→ f (0)

So we can define the dirac “function” as∫ ∞

−∞
f (t)δ(t)dt = f (0)

or more general we arrive at the convolution for some a ∈ R
(note that δ is an even function)∫ ∞

−∞
f (t)δ(t − a)dt = f (a) =

∫ ∞

−∞
f (t)δ(a− t)dt =: (f ∗ δ)(a).
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Dirac distributon

For a reasonable function f , we saw that∫ ∞

−∞
f (t)aε(t)dt → f (0) for ε → 0.

And we used this limit in ε to define Dirac “function” δ(t)..

Better: δ can rather be understood as a functional, i. e. a mapping that
“returns” a scalar value for every function.

f 7→ δ(f ) := f (0) =
∫ ∞

−∞
f (t)δ(t)dt
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Analogon. Measurement of temperature

Measuring temperature...

▶ can the thought of as a function assigning each point p a
temperature in degree.

▶ can be thought of as something acting on a thermometer
⇒ or: when we probe/measure, we actually get a local average

around p

T̃ =

∫
Ω
T (x)ϕp(x)dx with

∫
ϕp(x)dx = 1

and the support of ϕx lies around p ⇒ ϕp is called a test function.
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Characterise functions via testing

We denote by

C∞
c ([a, b]) =

{
ϕ : [a, b] → R

∣∣∣∣ϕ(n)(x) exists for all x ∈ [a, b]

and ϕ(n)(a) = ϕ(n)(b) = 0 for all n ∈ N
}
.

The set of smooth functions of compact support.

Theorem. Let f , g be two continuous functions defined on [a, b]. If∫ b

a
f (x)ϕ(x)dx =

∫ b

a
g(x)ϕ(x)dx for all ϕ ∈ C∞

c ([a, b])

then f ≡ g .
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Characterise derivatives via test functions

For nice functions f ∈ C 1 we can use integration by parts with a test
function ϕ ∈ Cc([a, b]) and get

∫ b

a
f ′(x)ϕ(x)dx = f (x)ϕ(x)

∣∣∣∣b
a

−
∫ b

a
f (x)ϕ′(x)dx = −

∫ b

a
f (x)ϕ′(x)dx

(remember that ϕ(a) = ϕ(b) = 0)

⇒ In that sense we can say the dirac distribution is a “generlized
derivative” of the Heaviside function u.
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The Laplace function of the Dirac “function”

RememberWe defined δ by
∫ ∞

0
f (t)δ(t)dt =: δ(f ) =: f (0)

and for the shiftet delta “function”∫ ∞

0
f (t)δa(t) =

∫ ∞

0
f (t)δ(t − a)dt = δa(f ) = f (a)

With these the Laplace transform is easy to see taking f (t) = e−st :

L(δa(t)) =
∫ ∞

0
δ(t − a)e−st dt = e−sa
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Hammerblow response of damped Mass-spring system
Example. (cf. Kreyszig, p. 227) Solve

y ′′ + 3y ′ + 2y = δ(t − 1)
y(0) = 0,
y ′(0) = 0.

We plot y(t) =
{

0 for t < 1
e−(t−1) − e−2(t−1) for t ≥ 1.

−0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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0.3

t

y
y(t)
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Square Wave response of damped Mass-spring system
Example. (cf. Kreyszig, p. 227) Solve for a > 1

y ′′a + 3y ′a + 2ya =
1

1 − a

(
u(t − 1)− u(t − a)

)
ya(0) = 0,
y ′a(0) = 0.

⇒ y2(t) =


0 for t < 1,
1
2 − e−(t−1) + 1

2e−2(t−1) for 1 ≤ t < 2,
−e−(t−1) + e−2(t−1) + 1

2e−2(t−1) − 1
2e−2(t−2) for t ≥ 2.

y2(t) , y 3
2
(t) , y 5

4
(t) , yH(t)

−0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.1

0.2

0.3

t

y
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Motivation for convolution

Remember. The Laplace transform is linear: L(f + g) = L(f ) + L(g)

In the solution of an IVP 
y ′′ + ay ′ + by = r

y(0) = K0,

y ′(0) = K1.

We obtained that for K0 = K1 = 0 we got using Q(s) = 1
s2+as+b

that

y(t) = L−1(Y (s)) = L−1
(
Q(s)R(s)+Q(s)

(
(s+a)K0+K1

))
= L−1(Q(s)R(s))

Question. What is the inverse Laplace transformation of a product of
two functions?
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Convolution
Definition. (Laplace version) We define the convolution of f and g as

(f ∗ g)(t) =
∫ t

0
f (τ)g(t − τ)dτ

if the integral is defined.

Example. for f (t) = g(t) = sin(t) we get

(sin ∗ sin)(t) = 1
2
(sin t − t cos t)

Example. for f (t) = g(t) = sin(t) we get

(t ∗ 1)(t) =
∫ t

0
τ1dτ =

1
2
t2
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Convolution Theorem

Theorem. Let f and g be two functions such that L(f ) and L(g) as well
as L(f ∗ g) exist.

Then it holds
L(f ∗ g) = L(f )L(g)

or equivalently
f ∗ g = L−1(F (s)G (s)

)
Proof.



23

Properties of Convolution

For two functions f , g , h the following properties hold

1. f ∗ g = g ∗ f (commutative)
2. f ∗ (g + h) = f ∗ g + f ∗ h (distributive)
3. (f ∗ g) ∗ h = f ∗ (g ∗ h) (associative)
4. f ∗ 0 = 0

Proof. They follow either via integral manipulation or via L
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One further example of a convolution

Exercise. Compute the convolution of (f ∗ δa)(t) =
∫ t

0
f (τ)δa(t − τ)dτ .
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Undamped Mass spring system with periodic force.
Solve the IVP 

y ′′ + y = sin(t)

y(0) = 0,
y ′(0) = 0.

The solution is y(t) = 1
2

(
sin t − t cos t

)
.

1 2 3 4 5 6 7 8 9 10 11 12

−5

5

t

y

Tacoma Bridge (Youtube)

https://www.youtube.com/watch?v=XggxeuFDaDU
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Undamped Mass spring system with two “bumps”.
Solve the IVP 

y ′′ + y = δ(t − a)− δ(t − b)

y(0) = 0,
y ′(0) = 0.

The solution is y(t) = sin(t − a)u(t − a)− sin(t − b)u(t − b).

For example with a = 1
2 , b = 5

1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

1

2

t

y
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Systems of ODEs
Consider the first order linear system with constant coefficients
a11, a12, a21, a22 and known functions g1, g2.
Then a Systems of ODEs is given by the following IVP

y ′1(t) = a11y1(t) + a12y2(t) + g1(t)

y ′2(t) = a21y1(t) + a22y2(t) + g2(t)

y1(0) = K1

y2(0) = K2


