

TMA4125 Matematikk 4N

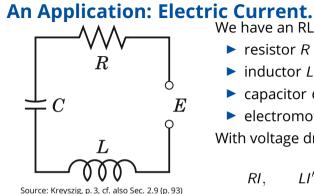
The Laplace Transform II

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

February 15, 2022

NTNU



We have an RLC circuit with

- resistor R (ohm)
- inductor L (henry)
- capacitor C (farad)

electromotive force E (Voltage V) With voltage drops (Spenningsavfall)

$$RI, \qquad LI' = L\frac{d}{dt}I, \qquad \frac{Q}{C} = \frac{1}{C}\int I dt.$$

Goal. Current $I(t) = \frac{d}{dt}Q$ (ampere) where Q is the charge (coulomb).

Kirchhoff's Current Law: Integro-Differential equation for I(t)

$$LI' + RI + \frac{1}{C}\int I\,\mathrm{d}t = V$$

The ODE for RLC circuit

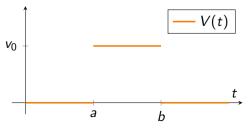
Taking the derivative of

$$LI' + RI + \frac{1}{C} \int I \, \mathrm{d}t = V$$

yields a second order ODE

$$LI'' + RI' + \frac{1}{C}I = V'$$

Question. (or goal for today)

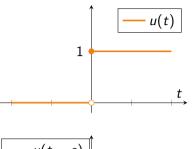


What happens if the turn on a constant voltage for some time [a, b]?

The Heaviside function

Definition. (Heaviside function)

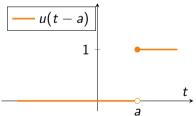
$$u(t) \coloneqq X_{[0,\infty)}(t) = egin{cases} 0 & ext{if } t < 0, \ 1 & ext{if } t \geq 0, \end{cases}$$



▶ For *a* ≥ 0:

$$u(t-a) = au_a u(t)$$

just shift the Heaviside function to a

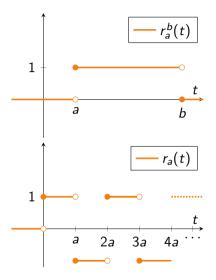


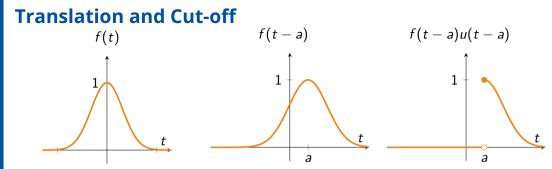
Rectangular functions

rectangle function:

$$r_a^b(t) \coloneqq u(t-a) - u(t-b), \ 0 \leq a < b$$

► periodic rectangular wave of period 2a $r_{a}(t) \coloneqq u(t) - 2u(t-a) + 2u(t-2a) - 2u(t-3a) + \dots$ $= u(t) + \sum_{k=1}^{\infty} (-1)^{k} 2r_{ka}^{(k+1)a}(t)$





- if we have a function f (maybe also only defined for $t \ge 0$)
- and we want to shift it, we get f(t a)
- lacktriangleright we can "turn on" only at t = a

Example. The Laplace transform of the Heaviside function.

$$\mathcal{L}(u(t-a)) = \int_0^\infty u(t-a) \mathrm{e}^{-st} \, \mathrm{d}t = \int_a^\infty \mathrm{e}^{-st} \, \mathrm{d}t = \frac{1}{-s} \mathrm{e}^{-st} \left| \int_{t=a}^{t=\infty} = \frac{\mathrm{e}^{-sa}}{s} = \mathrm{e}^{-sa} \mathcal{L}(1) \right|_{t=a}$$

NTNU

The *t*-shift Theorem (the second shift theorem)

Remember. The *s*-shift Theorem: $\mathcal{L}(e^{at}f(t)) = F(s-a)$

Theorem. If f has the Laplace transform F(s), then the function

$$g(t) = f(t-a)u(t-a) = egin{cases} 0 & ext{for } t < a \ f(t-a) & ext{for } t \geq a \end{cases}$$

has the Laplace transform

$$\mathcal{L}(g(t)) = \mathcal{L}(f(t-a)u(t-a)) = e^{-as}F(s)$$

We can also write this (applying \mathcal{L}^{-1} on both sides)

$$f(t-a)u(t-a) = \mathcal{L}^{-1}(e^{-as}F(s)).$$

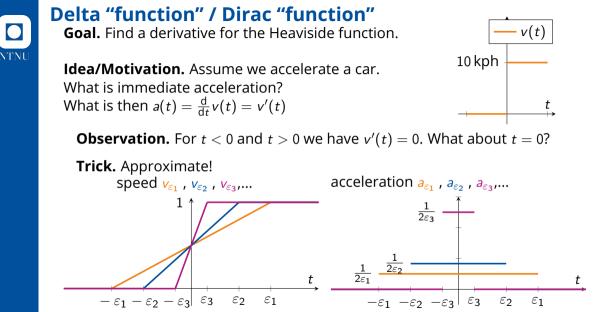
Proof.

Example.

Compute the Laplace transform $\mathcal{L}(f)$ of

$$f(t) = egin{cases} 0 & ext{for } t < 1 \ \sin(t-1) & ext{for } t \geq 1. \end{cases}$$

NTNU



Delta / Dirac "function" II

Let's fix any ε , then we get

$$\int_{-\infty}^{\infty} \mathsf{a}_arepsilon(t) \, \mathsf{d}t = 1$$

independent of ε !

We observe further

- ▶ the support of $a_{\varepsilon}(t)$ is an interval of length 2 ϵ and gets smaller and smaller for $\epsilon \to 0$
- ▶ We know the minimal (0) and maximnal function value.

$$\max_{t\in\mathbb{R}}|a_{\varepsilon}'(t)|=\frac{1}{2\varepsilon}$$

Idea. Taking the limit $\epsilon \to 0$ we obtain a "generalized" function $\delta(t)$

Delta / Dirac "function" III

Taking the limit $\epsilon \to 0$ we obtain a "generalized" function $\delta(t)$ which fulfills

1.
$$\delta(t) = \begin{cases} \infty & \text{for } x = 0 \\ 0 & \text{for } x \neq 0 \end{cases}$$

2. $\int_{-\infty}^{\infty} \delta(t) \, dt = 1$

3. intuitively: The derivative of the Heaviside function is $u'(t) = \delta(t)$.

This is called (often) Dirac or delta "function".

Obs. From Math 2 we know that $\delta(t)$ can not be a normal function, since its Riemann integral is zero. So do we know always have to keep the whole construction via $a_{\varepsilon}(t)$ in mind? No.

Properties of the Delta "function"

If we look at

$$\int_{-\infty}^{\infty} f(t) a_{\varepsilon}(t) \, \mathrm{d}t = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(t) \, \mathrm{d}t \xrightarrow{\varepsilon \to 0} f(0)$$

So we can define the dirac "function" as

$$\int_{-\infty}^{\infty} f(t)\delta(t)\,\mathrm{d}t = f(0)$$

or more general we arrive at the convolution for some $a \in \mathbb{R}$ (note that δ is an even function)

$$\int_{-\infty}^{\infty} f(t)\delta(t-a) \, \mathrm{d}t = f(a) = \int_{-\infty}^{\infty} f(t)\delta(a-t) \, \mathrm{d}t \eqqcolon (f * \delta)(a).$$

Dirac distributon

For a reasonable function *f*, we saw that

$$\int_{-\infty}^{\infty} f(t) a_{arepsilon}(t) \, \mathrm{d}t o f(0) ext{ for } arepsilon o 0.$$

And we used this limit in ε to define Dirac "function" $\delta(t)$..

Better: δ can rather be understood as a functional, i. e. a mapping that "returns" a scalar value for every function.

$$f\mapsto \delta(f)\coloneqq f(0)=\int_{-\infty}^{\infty}f(t)\delta(t)\,\mathrm{d}t$$

Analogon. Measurement of temperature

Measuring temperature...

- can the thought of as a function assigning each point *p* a temperature in degree.
- can be thought of as something acting on a thermometer
- \Rightarrow or: when we probe/measure, we actually get a local average around p

$$ilde{\mathcal{T}} = \int_{\Omega} \mathcal{T}(x) \phi_p(x) \, \mathrm{d}x \quad ext{with } \int \phi_p(x) \, \mathrm{d}x = 1$$

and the support of ϕ_x lies around $p \Rightarrow \phi_p$ is called a test function.

Characterise functions via testing

We denote by

$$C_c^{\infty}([a,b]) = \left\{ \phi \colon [a,b] o \mathbb{R} \middle| \phi^{(n)}(x) \text{ exists for all } x \in [a,b]
ight.$$

and $\phi^{(n)}(a) = \phi^{(n)}(b) = 0 ext{ for all } n \in \mathbb{N}
ight\}.$

The set of smooth functions of compact support.

Theorem. Let f, g be two continuous functions defined on [a, b]. If

$$\int_a^b f(x)\phi(x)\,\mathrm{d}x = \int_a^b g(x)\phi(x)\,\mathrm{d}x \quad ext{ for all }\phi\in C^\infty_c([a,b])$$

then $f \equiv g$.

Characterise derivatives via test functions

For nice functions $f \in C^1$ we can use integration by parts with a test function $\phi \in C_c([a, b])$ and get

$$\int_{a}^{b} f'(x)\phi(x) \, \mathrm{d}x = f(x)\phi(x) \Big|_{a}^{b} - \int_{a}^{b} f(x)\phi'(x) \, \mathrm{d}x = -\int_{a}^{b} f(x)\phi'(x) \, \mathrm{d}x$$

(remember that $\phi(a) = \phi(b) = 0$)

 \Rightarrow In that sense we can say the dirac distribution is a "generlized derivative" of the Heaviside function *u*.

The Laplace function of the Dirac "function"

Remember We defined δ by $\int_0^\infty f(t)\delta(t) dt =: \delta(f) =: f(0)$

and for the shiftet delta "function"

$$\int_0^\infty f(t)\delta_a(t) = \int_0^\infty f(t)\delta(t-a)\,\mathrm{d}t = \delta_a(f) = f(a)$$

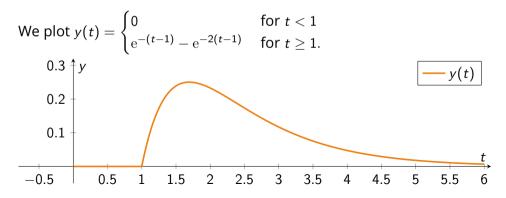
With these the Laplace transform is easy to see taking $f(t) = e^{-st}$:

$$\mathcal{L}(\delta_{a}(t)) = \int_{0}^{\infty} \delta(t-a) \mathrm{e}^{-st} \, \mathrm{d}t = \mathrm{e}^{-sa}$$

NTNU

Hammerblow response of damped Mass-spring system Example. (cf. Kreyszig, p. 227) Solve

$$\begin{cases} y'' + 3y' + 2y = \delta(t-1) \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$



Square Wave response of damped Mass-spring system

Example. (cf. Kreyszig, p. 227) Solve for a > 1

$$\begin{cases} y_a'' + 3y_a' + 2y_a = \frac{1}{1-a} (u(t-1) - u(t-a)) \\ y_a(0) = 0, \\ y_a'(0) = 0. \end{cases}$$

$$\Rightarrow y_2(t) = \begin{cases} 0 & \text{for } t < 1, \\ \frac{1}{2} - e^{-(t-1)} + \frac{1}{2}e^{-2(t-1)} & \text{for } 1 \le t < 2, \\ -e^{-(t-1)} + e^{-2(t-1)} + \frac{1}{2}e^{-2(t-1)} - \frac{1}{2}e^{-2(t-2)} & \text{for } t \ge 2. \end{cases}$$

$$0.3 \uparrow y \qquad y_2(t), y_{\frac{3}{2}}(t), y_{\frac{5}{4}}(t), y_{\text{H}}(t)$$

$$0.2 \qquad 0.3 \uparrow y \qquad y_2(t), y_{\frac{3}{2}}(t), y_{\frac{5}{4}}(t), y_{\text{H}}(t)$$

NTNU

Motivation for convolution

Remember. The Laplace transform is linear: $\mathcal{L}(f + g) = \mathcal{L}(f) + \mathcal{L}(g)$

In the solution of an IVP

$$egin{array}{ll} y''+ay'+by=r\ y(0)=K_0,\ y'(0)=K_1. \end{array}$$

We obtained that for $K_0 = K_1 = 0$ we got using $Q(s) = \frac{1}{s^2 + as + b}$ that

$$y(t) = \mathcal{L}^{-1}(Y(s)) = \mathcal{L}^{-1}(Q(s)R(s) + Q(s)((s+a)K_0 + K_1)) = \mathcal{L}^{-1}(Q(s)R(s))$$

Question. What is the inverse Laplace transformation of a product of two functions?

Convolution

Definition. (Laplace version) We define the convolution of *f* and *g* as

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,\mathrm{d} au$$

if the integral is defined.

Example. for f(t) = g(t) = sin(t) we get

$$(\sin*\sin)(t) = \frac{1}{2}(\sin t - t\cos t)$$

Example. for f(t) = g(t) = sin(t) we get

$$(t*1)(t) = \int_0^t \tau 1 \, \mathrm{d}\tau = \frac{1}{2}t^2$$

Convolution Theorem

Theorem. Let *f* and *g* be two functions such that $\mathcal{L}(f)$ and $\mathcal{L}(g)$ as well as $\mathcal{L}(f * g)$ exist.

Then it holds

$$\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g)$$

or equivalently

$$f * g = \mathcal{L}^{-1}(F(s)G(s))$$

Proof.

Properties of Convolution

For two functions f, g, h the following properties hold

- **1.** f * g = g * f (commutative)
- **2.** f * (g + h) = f * g + f * h (distributive)
- **3.** (f * g) * h = f * (g * h) (associative)
- **4.** f * 0 = 0

Proof. They follow either via integral manipulation or via $\mathcal L$

One further example of a convolution

Exercise. Compute the convolution of $(f * \delta_a)(t) = \int_0^t f(\tau) \delta_a(t-\tau) d\tau$.

Undamped Mass spring system with periodic force. Solve the IVP $\begin{cases} y'' + y = \sin(t) \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$ The solution is $y(t) = \frac{1}{2}(\sin t - t \cos t)$. $5 \stackrel{\uparrow}{+}^{y}$ 6 8 10 12 3 4 7 9 -5

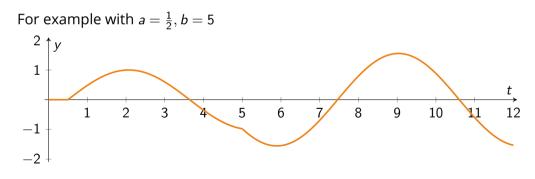
NTNU

Undamped Mass spring system with two "bumps".

Solve the IVP

$$\begin{cases} y'' + y = \delta(t - a) - \delta(t - b) \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$

The solution is $y(t) = \sin(t-a)u(t-a) - \sin(t-b)u(t-b)$.



Systems of ODEs

Consider the first order linear system with constant coefficients $a_{11}, a_{12}, a_{21}, a_{22}$ and known functions g_1, g_2 . Then a Systems of ODEs is given by the following IVP

$$\begin{cases} y_1'(t) = a_{11}y_1(t) + a_{12}y_2(t) + g_1(t) \\ y_2'(t) = a_{21}y_1(t) + a_{22}y_2(t) + g_2(t) \\ y_1(0) = K_1 \\ y_2(0) = K_2 \end{cases}$$