

TMA4125 Matematikk 4N

Numerical methods for ordinary differential equations
— Runge–Kutta methods and adaptive stepping

Ronny Bergmann and Douglas R. Q. Pacheco

Department of Mathematical Sciences, NTNU.

March 1, 2022

Remember the ODEs we are trying to solve: $\mathbf{y}'(t) = \mathbf{f}(t, y)$

Remember the ODEs we are trying to solve: $\mathbf{y}'(t) = \mathbf{f}(t, y)$

Euler's method:

$$m{k_1} = m{f}(t_n, m{y}_n) \ m{y}_{n+1} = m{y}_n + h m{k}_1 \quad o \quad \mathcal{O}(h) ext{ convergence}$$

Remember the ODEs we are trying to solve: $\mathbf{y}'(t) = \mathbf{f}(t, y)$

Euler's method:

$$m{k_1} = m{f}(t_n, m{y}_n) \ m{y}_{n+1} = m{y}_n + h m{k}_1 \quad o \quad \mathcal{O}(h) ext{ convergence}$$

Heun's method:

```
egin{aligned} m{k}_1 &= m{f}(t_n, m{y}_n) \ m{k}_2 &= m{f}(t_n + h, m{y}_n + h m{k}_1) \ m{y}_{n+1} &= m{y}_n + h \left[0.5 m{k}_1 + 0.5 m{k}_2\right] & 
ightarrow & \mathcal{O}(h^2) \text{ convergence} \end{aligned}
```


Remember the ODEs we are trying to solve: $\mathbf{y}'(t) = \mathbf{f}(t, y)$

Euler's method:

$$egin{aligned} m{k_1} &= m{f}(t_n, m{y}_n) \ m{y}_{n+1} &= m{y}_n + h m{k_1} &
ightarrow & \mathcal{O}(h) \ ext{convergence} \end{aligned}$$

Heun's method:

$$egin{aligned} m{k}_1 &= m{f}(t_n, m{y}_n) \ m{k}_2 &= m{f}(t_n + h, m{y}_n + h m{k}_1) \ m{y}_{n+1} &= m{y}_n + h \left[0.5 m{k}_1 + 0.5 m{k}_2\right] &
ightarrow & \mathcal{O}(h^2) \text{ convergence} \end{aligned}$$

Questions:

- ► Can we generalise this?
- ► Can we do better than $\mathcal{O}(h^2)$?

RK methods are one-step methods following the general scheme

$$\mathbf{k}_i = \mathbf{f}\Big(t_n + c_i h, \mathbf{y}_n + h \sum_{j=1}^s a_{ij} \mathbf{k}_j\Big), \quad i = 1, ..., s \quad (s \text{ stages})$$

RK methods are one-step methods following the general scheme

$$m{k}_i = m{f}\Big(t_n + c_i h, \, m{y}_n + h \sum_{j=1}^s a_{ij} m{k}_j\Big), \quad i = 1, ..., s \quad (s \, \text{stages})$$
 $m{y}_{n+1} = m{y}_n + h \sum_{i=1}^s m{b}_i m{k}_i$

RK methods are one-step methods following the general scheme

$$\mathbf{k}_i = \mathbf{f} \Big(t_n + c_i h, \, \mathbf{y}_n + h \sum_{j=1}^s a_{ij} \mathbf{k}_j \Big), \quad i = 1, ..., s \quad (s \text{ stages})$$

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \sum_{i=1}^s b_i \mathbf{k}_i$$

The coefficients are all real numbers, presented in the Butcher tableau:

$$\mathbf{k}_i = \mathbf{f} \Big(t_n + c_i h, \ \mathbf{y}_n + h \sum_{j=1}^s a_{ij} \mathbf{k}_j \Big)$$
 $\mathbf{y}_{n+1} = \mathbf{y}_n + h \sum_{i=1}^s b_i \mathbf{k}_i$

Euler's method:

$$egin{aligned} oldsymbol{k}_1 &= oldsymbol{f}(t_n, oldsymbol{y}_n) \ oldsymbol{y}_{n+1} &= oldsymbol{y}_n + holdsymbol{k}_1 \end{aligned}$$

$$\mathbf{k}_i = \mathbf{f} \Big(t_n + c_i h, \, \mathbf{y}_n + h \sum_{j=1}^s a_{ij} \mathbf{k}_j \Big)$$
 $\mathbf{y}_{n+1} = \mathbf{y}_n + h \sum_{i=1}^s b_i \mathbf{k}_i$

(????) method:

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& \frac{1}{2} & \frac{1}{2}
\end{array}$$

$$m{k}_i = m{f} \Big(t_n + c_i h, \, m{y}_n + h \sum_{j=1}^s a_{ij} m{k}_j \Big)$$
 $m{y}_{n+1} = m{y}_n + h \sum_{i=1}^s b_i m{k}_i$

Heun (3rd-order):

0	0	0	0
1/3 2/3	1/3	0	0
2/3	0	2/3	0
	1/4	0	3/4

c_1	a ₁₁	a ₁₂ a ₂₂		a_{1s}
<i>c</i> ₂	a ₂₁	a ₂₂		a_{2s}
:	\vdots	÷	٠.	÷
C_S	a_{s1}	a_{s2}		a_{ss}
	b_1	b_2		b_s

Theorem

An RK method is order-p consistent if, and only if all the conditions up to p in the table are satisfied

р	Conditions
1	$\sum\limits_{i=1}^{s}b_{i}=1$
2	$\sum\limits_{i=1}^{s}b_{i}c_{i}=rac{1}{2}$
3	$\sum_{i=1}^{s} b_i c_i^2 = \frac{1}{3}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} b_i a_{ij} c_j = \frac{1}{6}$
4	$\sum_{i=1}^{s} b_i c_i^3 = \frac{1}{4}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} b_i c_i a_{ij} c_j = \frac{1}{8}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} b_i a_{ij} c_j^2 = \frac{1}{12}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{k=1}^{s} b_i a_{ij} a_{jk} c_k = \frac{1}{24}$

c_1	a ₁₁	a ₁₂		a_{1s}
<i>c</i> ₂	a ₂₁	a ₂₂		a_{2s}
÷	÷	÷	٠.	÷
C_S	a_{s1}	a_{s2}		a_{ss}
	b_1	b_2		b_s

Theorem

An RK method is order-p consistent if, and only if all the conditions up to p in the table are satisfied

Heun's method:

0	0	0
1	1	0
	$\frac{1}{2}$	$\frac{1}{2}$

р	Conditions
1	$\sum\limits_{i=1}^{s}b_{i}=1$
2	$\sum_{i=1}^{s} b_i c_i = \frac{1}{2}$
3	$\sum_{i=1}^{s} b_i {c_i}^2 = rac{1}{3} \ \sum_{i=1}^{s} \sum_{j=1}^{s} b_i a_{ij} c_j = rac{1}{6}$
4	$\sum_{i=1}^{s} b_i c_i^3 = \frac{1}{4}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} b_i c_i a_{ij} c_j = \frac{1}{8}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} b_i a_{ij} c_j^2 = \frac{1}{12}$ $\sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{k=1}^{s} b_i a_{ij} a_{jk} c_k = \frac{1}{24}$

One-step methods:
$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{\Phi}(t_n, \mathbf{y}_n, h)$$

Question: for a method Φ , how can we estimate the error $\epsilon_n = |\mathbf{y}_n - \mathbf{y}(t_n)|$, if we don't know the exact solution $\mathbf{y}(t)$?

One-step methods:
$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{\Phi}(t_n, \mathbf{y}_n, h)$$

Question: for a method Φ , how can we estimate the error $\epsilon_n = |\mathbf{y}_n - \mathbf{y}(t_n)|$, if we don't know the exact solution $\mathbf{y}(t)$?

Idea

Why not use a more accurate method $\hat{\mathbf{\Phi}}$ to compute $\hat{\epsilon}_n = |\mathbf{y}_n - \hat{\mathbf{y}}_n|$?

If $\hat{\epsilon}_{n+1} > \text{tol}$, we might want to reduce the time-step size h and recompute the step... but how can we estimate a good h_{new} ?

If $\hat{\epsilon}_{n+1} > \text{tol}$, we might want to reduce the time-step size h and recompute the step... but how can we estimate a good h_{new} ?

► Since $\hat{\Phi}$ is convergent of order p+1, we can write

$$\hat{\boldsymbol{y}}_{n+1} - \boldsymbol{y}(t_n + h) = Ah^{p+1}$$

If $\hat{\epsilon}_{n+1} > \text{tol}$, we might want to reduce the time-step size h and recompute the step... but how can we estimate a good h_{new} ?

- Since $\hat{\mathbf{\Phi}}$ is convergent of order p+1, we can write $\hat{\mathbf{y}}_{n+1} \mathbf{y}(t_n + h) = Ah^{p+1}$
- Since Φ is consistent of order p, we can write $\frac{y(t_n+h)-y(t_n)}{h}-\Phi(t_n,y(t_n),h)=Bh^p, \text{ that is,}$

If $\hat{\epsilon}_{n+1} > \text{tol}$, we might want to reduce the time-step size h and recompute the step... but how can we estimate a good h_{new} ?

- Since $\hat{\mathbf{\Phi}}$ is convergent of order p+1, we can write $\hat{\mathbf{y}}_{n+1} \mathbf{y}(t_n + h) = Ah^{p+1}$
- ightharpoonup Since Φ is consistent of order p, we can write

$$\frac{\mathbf{y}(t_n+h)-\mathbf{y}(t_n)}{h}-\mathbf{\Phi}(t_n,\mathbf{y}(t_n),h)=Bh^p$$
, that is,

$$y(t_n + h) - [y(t_n) + h\Phi(t_n, y(t_n), h)] = Bh^{p+1}$$

If $\hat{\epsilon}_{n+1} > \text{tol}$, we might want to reduce the time-step size h and recompute the step... but how can we estimate a good h_{new} ?

- Since $\hat{\mathbf{\Phi}}$ is convergent of order p+1, we can write $\hat{\mathbf{y}}_{n+1} \mathbf{y}(t_n + h) = Ah^{p+1}$
- ▶ Since Φ is consistent of order p, we can write

$$\frac{\mathbf{y}(t_n+h)-\mathbf{y}(t_n)}{h}-\mathbf{\Phi}(t_n,\mathbf{y}(t_n),h)=Bh^p$$
, that is,

$$y(t_n + h) - [y(t_n) + h\Phi(t_n, y(t_n), h)] = Bh^{p+1}$$

Hence, we get

$$|\hat{\boldsymbol{y}}_{n+1} - \boldsymbol{y}_{n+1}| \approx |A + B|h^{p+1}$$

If $\hat{\epsilon}_{n+1} > \text{tol}$, we might want to reduce the time-step size h and recompute the step... but how can we estimate a good h_{new} ?

- Since $\hat{\mathbf{\Phi}}$ is convergent of order p+1, we can write $\hat{\mathbf{y}}_{n+1} \mathbf{y}(t_n + h) = Ah^{p+1}$
- ▶ Since Φ is consistent of order p, we can write

$$rac{\mathbf{y}(t_n+h)-\mathbf{y}(t_n)}{h}-\mathbf{\Phi}(t_n,\mathbf{y}(t_n),h)=Bh^p$$
, that is,

$$\mathbf{y}(t_n+h)-[\mathbf{y}(t_n)+h\mathbf{\Phi}(t_n,\mathbf{y}(t_n),h)]=Bh^{p+1}$$

Hence, we get

$$\hat{\epsilon}_{n+1} = |\hat{\mathbf{y}}_{n+1} - \mathbf{y}_{n+1}| \approx |A + B|h^{p+1}$$

Time-step control

$$\hat{\epsilon}_{n+1} \approx C h^{p+1}$$
 $\hat{\epsilon}_{new} \approx C h^{p+1}_{new} \quad \Rightarrow$

Time-step control

$$\hat{\epsilon}_{n+1} pprox Ch^{p+1}$$
 $\hat{\epsilon}_{new} pprox Ch^{p+1}_{new} \quad \Rightarrow$

$$\hat{\epsilon}_{new} < tol \quad \Leftrightarrow \quad h_{new} < \quad \left[\left(\frac{\mathrm{tol}}{\hat{\epsilon}_{n+1}} \right)^{\frac{1}{p+1}} \right] h$$

Time-step control

$$\hat{\epsilon}_{n+1} \approx Ch^{p+1}$$
 $\hat{\epsilon}_{new} \approx Ch^{p+1}_{new} \implies$

$$\hat{\epsilon}_{new} < tol \quad \Leftrightarrow \quad h_{new} < \left[\left(\frac{\mathsf{tol}}{\hat{\epsilon}_{n+1}} \right)^{\frac{1}{p+1}} \right] h$$

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y(0) = 2$, $h = 0.5$, tol = 0.01

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y(0) = 2$, $h = 0.5$, $tol = 0.01$

First step:

- ightharpoonup Evaluate $k_1 = f(t_n, y_n) = 2$
- ► Compute Euler step: $y_{n+1}^{\text{Euler}} = y_n + hk_1 = 3$
- ► Evaluate $k_2 = f(t_n + h, y_n + hk_1) = 2$
- Compute $y_{n+1} = y_n + h\left[\frac{k_1}{2} + \frac{k_2}{2}\right] = 3$

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y(0) = 2$, $h = 0.5$, $tol = 0.01$

First step:

- ightharpoonup Evaluate $k_1 = f(t_n, y_n) = 2$
- ► Compute Euler step: $y_{n+1}^{\text{Euler}} = y_n + hk_1 = 3$
- ► Evaluate $k_2 = f(t_n + h, y_n + hk_1) = 2$
- Compute $y_{n+1} = y_n + h\left[\frac{k_1}{2} + \frac{k_2}{2}\right] = 3$

Error estimate: $\hat{\epsilon}_{n+1} = |3 - 3| = 0 < \text{tol}$

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y(0) = 2$, $h = 0.5$, $tol = 0.01$

First step:

- ightharpoonup Evaluate $k_1 = f(t_n, y_n) = 2$
- ► Compute Euler step: $y_{n+1}^{\text{Euler}} = y_n + hk_1 = 3$
- ► Evaluate $k_2 = f(t_n + h, y_n + hk_1) = 2$
- ► Compute $y_{n+1} = y_n + h \left[\frac{k_1}{2} + \frac{k_2}{2} \right] = 3$

Error estimate: $\hat{\epsilon}_{n+1} = |3 - 3| = 0 < \text{tol}$

- ⇒ No need to recompute step!
- ⇒ We can keep h as it is, or even increase it a bit...

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y_1 = 3$, $h = 0.5$, tol = 0.01

Second step:

- ightharpoonup Evaluate $k_1 = f(t_n, y_n) = 2$
- ► Compute Euler step: $y_{n+1}^{\text{Euler}} = y_n + hk_1 = 4$
- ► Evaluate $k_2 = f(t_n + h, y_n + hk_1) = 2.5$
- Compute $y_{n+1} = y_n + h \left[\frac{k_1}{2} + \frac{k_2}{2} \right] = 4.125$

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y_1 = 3$, $h = 0.5$, tol = 0.01

Second step:

- ► Evaluate $k_1 = f(t_n, y_n) = 2$
- ► Compute Euler step: $y_{n+1}^{\text{Euler}} = y_n + hk_1 = 4$
- ► Evaluate $k_2 = f(t_n + h, y_n + hk_1) = 2.5$
- Compute $y_{n+1} = y_n + h \left[\frac{k_1}{2} + \frac{k_2}{2} \right] = 4.125$

Error estimate: $\hat{\epsilon}_{n+1} = |4.125 - 4| = 0.125 > \text{tol}$

$$y' = 2 + 2^{-t} - \sin(0.25\pi y)$$
, $y_1 = 3$, $h = 0.5$, tol = 0.01

Second step:

- ightharpoonup Evaluate $k_1 = f(t_n, y_n) = 2$
- ► Compute Euler step: $y_{n+1}^{\text{Euler}} = y_n + hk_1 = 4$
- ► Evaluate $k_2 = f(t_n + h, y_n + hk_1) = 2.5$
- ► Compute $y_{n+1} = y_n + h \left[\frac{k_1}{2} + \frac{k_2}{2} \right] = 4.125$

Error estimate:
$$\hat{\epsilon}_{n+1} = |4.125 - 4| = 0.125 > \text{tol}$$

 \Rightarrow Reduce *h* and recompute the step:

$$h_{new} < \left[\left(\frac{\text{tol}}{\hat{\epsilon}_{n+1}} \right)^{\frac{1}{p+1}} \right] h = \left(\frac{0.01}{0.125} \right)^{\frac{1}{2}} \times 0.5 \approx 0.14$$

Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \sum_{i=1}^s b_i \mathbf{k}_i, \ \mathcal{O}(h^{p+1})$$
$$\mathbf{y}_{n+1}^* = \mathbf{y}_n + h \sum_{i=1}^s b_i^* \mathbf{k}_i, \ \mathcal{O}(h^p)$$

Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

Therefore, we get simply
$$\hat{\epsilon}_{n+1} = \left| \boldsymbol{y}_{n+1} - \boldsymbol{y}_{n+1}^* \right| = h \left| \sum_{i=1}^s (b_i - b_i^*) \boldsymbol{k}_i \right|$$
,

Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

Therefore, we get simply
$$\hat{\epsilon}_{n+1} = \left| \mathbf{y}_{n+1} - \mathbf{y}_{n+1}^* \right| = h \left| \sum_{i=1}^s (b_i - b_i^*) \mathbf{k}_i \right|$$
,

so we can easily compute

$$h_{new} < \left[\left(\frac{\mathsf{tol}}{\hat{\epsilon}_{n+1}} \right)^{\frac{1}{p+1}} \right] h$$