TMA4125 Matematikk 4N

Ronny Bergmann and Douglas R. Q. Pacheco
Department of Mathematical Sciences, NTNU.

March 1, 2022

>
bo
o
[}
c
Es
o
@
2
o
=
©
o
v
c
o
%3
n
Y
o
>
£
1%
&
[}
=
c
=)
=
o
00
o
2
2
<}
=z

Introduction

Remember the ODEs we are trying to solve: y'(t) = f(t,y)

Introduction

Remember the ODEs we are trying to solve: y'(t) = f(t,y)

Euler's method:

ki = f(tn,yn)
Yni1=Yn,+hki — O(h)convergence

Introduction

Remember the ODEs we are trying to solve: y'(t) = f(t,y)

Euler's method:

ki = f(tn,yn)
Yni1=Yn,+hki — O(h)convergence

Heun’'s method:

ki = f(t,,,yn)

ko = f(tn + h,y,, + hkl)

Yni1=Yn+ h[05ks +0.5ka] — O(h?) convergence

Introduction

Remember the ODEs we are trying to solve: y'(t) = f(t,y)

Euler's method:

ki = f(tmy,,)
Yni1=Yn,+hki — O(h)convergence

Heun's method:

ki =f(tn, y,)
ko = f(tn + h,y,, + hkl)
Yni1 =Y, + h[0.5k; +05k;] — O(h?) convergence

Questions:

» Can we generalise this?
» Can we do better than O(h?)?

Runge-Kutta methods

RK methods are one-step methods following the general scheme

S
ki = f(t,, +ch y,+ h;a,-jkj), i=1,..,s (sstages)
J:

Runge-Kutta methods

RK methods are one-step methods following the general scheme
s
k; = f(t,, +cih, y,+ hZa,-jkj), i=1,..,s (sstages)

j=1

s
Ynt1 :yn+hzbfki
i=1

Runge-Kutta methods

RK methods are one-step methods following the general scheme

S
ki = f(t,7 +ch y,+ h;a,-jkj), i=1,..,s (sstages)
J:

s
Ynt1 :yn+hzbfki
i=1

The coefficients are all real numbers, presented in the Butcher tableau:

Ci|a1 d12 ... dis
C | d21 a2 ... dzs
Cs | ads1 ds2 ... dss

b1 by ... bs

Runge-Kutta methods

° C1|a1 a2 ... dis
ki = f(tn +cih y,+hYy a,-jkj) ol
J=1 - ..)
s : : .
yn+1:yn+hzbiki Cs | ds1 ds2 ... Adss
i=1 by by ... b

Euler's method:
k1 = f(t,,,yn)
Yoi1=Yn+ hk1

Runge-Kutta methods

o a|ain a ais
ki = f(tn +cih, y,+ hz a,-jkj> o | a1 am e
j=1 ,
S .
Ynt1 :yn+h2biki Cs | s1 as2 ass
i=1 b1 b bs

(?7?7?) method:

Runge-Kutta methods

ki = f(t,7 +cih, y, + hzs: aijkj>

Jj=1

Yoi1=Ya+h)_ bik
i=1

Heun (3rd-order):
0 0 0

0
1/3|1/3 0 0
2/3| 0 2/3 0

|1/4 0 3/4

€| 411 412 dis
Co | a1 ax azs
Cs | ds1 ds2 dss

by b bs

Consistency

o]
(6]

Cs

di1 412 ... dls
dp1 ag2 ... ans
ds1 ds2 e dss

Consistency

Cl1|ad11 412 ... 4ais
Co|ax ax» ... ass
Cs | ds1 ds2 ... dss
bi by ... bs
Theorem

An RK method is order-p consistent
if, and only if all the conditions up
to p in the table are satisfied

Consistency

p Conditions € |a1 a2 ... ais
1 Zs:b,-ZI Cy | d21 4d22 ... Qazs
,s:1 - . . .
2 i:zlbiq ~2 Cs | ds1 ds2 ... dss
3 > b 1 bi by ... bs
1%~ 3
i=1
A Theorem
bjajic; = + . .
,:21,;1 e An RK method is order-p consistent
4 ZS: bic? = 1 if, an_d only if all the cor?di.tions up
=t to p in the table are satisfied
> 2. biciajci =3
i=1j=1
S S
> X biajg? = 1
i=1j=1
S s S 1
Z Z Z b;aUajkck = 2z

Il
-
-
Il
A
x
Il
-

Consistency

Heun's method:

Conditions

S bi=1
i=1

. 1
Z b,'C,' =3
i=1

S
Z b,'C,'2 = %

=1
s

1
biajici = g

'Mt.

Il
—
<.

Il
—

Mm

iy

e
S
o

w
Il
N

Il
iR

1
biciajc; = 3

o
M

Il
-
.

Il
-

2_ 1
biajci® = 73

.M‘n
Mm

Il
N
-,

Mlﬂ
-1

—
i
I
i
Il

b,-a,-jajkck = 2z

Error estimation
One-step methods: y,.1 =y, + h®(tn,y,, h)

Question: for a method @, how can we estimate the error
en = |y, — y(ts)|, if we don't know the exact solution y(t)?

Error estimation
One-step methods: y,.1 =y, + h®(tn,y,, h)

Question: for a method @, how can we estimate the error
en = |y, — y(ts)|, if we don't know the exact solution y(t)?

Idea
Why not use a more accurate method ® to compute &, = |y, — ¥,|?
y

A

v

Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?

Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?
> Since & is convergent of order p + 1, we can write

Ynp1 = y(tn + h) = AhPH1

Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?

> Since & is convergent of order p + 1, we can write
Yni1 — ¥(ta + h) = AhPH

» Since & is consistent of order p, we can write
Ytakh)=y(t) _ @ (¢, y(t,), h) = BhP, that is,

Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?

> Since & is convergent of order p + 1, we can write
Yni1 — ¥(ta + h) = AhPH

» Since & is consistent of order p, we can write
Ytakh)=y(t) _ @ (¢, y(t,), h) = BhP, that is,

y(ta+ h) = [y(ta) + h®(t,, y(t,).)] = BAPTL

Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?

> Since & is convergent of order p + 1, we can write
Yni1 — ¥(ta + h) = AhPH

» Since & is consistent of order p, we can write
Ytakh)=y(t) _ @ (¢, y(t,), h) = BhP, that is,

y(ta+ h) = [y(ta) + h®(t,, y(t,).)] = BAPTL

Hence, we get

‘yn—i—l _yn—l—l‘ ~ |A+ B‘thrl

Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?

> Since & is convergent of order p + 1, we can write
Yni1 — ¥(ta + h) = AhPH

» Since & is consistent of order p, we can write
Ytakh)=y(t) _ @ (¢, y(t,), h) = BhP, that is,

y(ta+ h) = [y(ta) + h®(t,, y(t,).)] = BAPTL

Hence, we get

€nt1 = ‘yn—i—l _yn—l—l‘ ~ |A+ B‘thrl

B Time-step control

Eny1 ~ ChPHE

s chpil
eneWNChﬁeW =

B Time-step control

Eny1 ~ ChPHE

s chpil
eneWNChﬁeW =

1
tol \ 1
Crow < tol & hpey < [(>,,]h

é\n—i-l

Time-step control

Eny1 ~ ChPHE

s chpil
eneWNChﬁeW =

1
tol \ 1
Crow < tol & hpey < [(>,,]h

é\n—i-l

A

v

B Time-step control: Heun + Euler

NTNU
Yy =242 —sin(0.251y), y(0)=2, h=05, tol=0.01

B Time-step control: Heun + Euler

NTNU

y' =2+27"—sin(0.257y), y(0)=2, h=0.5 tol=0.01
First step:
> Evaluate k1 = f(tn, yn) =2

> Compute Euler step: yEU™ =y, + hky =3
» Evaluate ko = f(t, + h,yn + hk1) =2

> Compute yni1 =yn+h [% + %} =3

B Time-step control: Heun + Euler

NTNU

y' =2+27"—sin(0.257y), y(0)=2, h=0.5 tol=0.01

First step:

> Evaluate k1 = f(tn, yn) =2
> Compute Euler step: yEU™ =y, + hky =3
» Evaluate ko = f(t, + h,yn + hk1) =2

> Compute yni1 =yn+h [% + %} =3

Error estimate: é,11 =13 — 3| =0 < tol

B Time-step control: Heun + Euler

NTNU
y' =2+27"—sin(0.257y), y(0)=2, h=0.5 tol=0.01

First step:

> Evaluate k1 = f(tn, yn) =2
> Compute Euler step: yEU™ =y, + hky =3
» Evaluate ko = f(t, + h,yn + hk1) =2

> Compute yni1 =yn+h [% + %} =3

Error estimate: é,11 =13 — 3| =0 < tol
= No need to recompute step!

= We can keep has itis,
or even increase it a bit...

B Time-step control: Heun + Euler

NTNU
Yy =242t —sin(0.25my), y1=3, h=05, tol=0.01

Second step:
> Evaluate k; = f(tn,yn) =2

» Compute Euler step: yEUr =y, + hky = 4
» Evaluate ky = f(t, + h,yn + hky) = 2.5

» Compute y,41 =y, +h [% + %} =4.125

B Time-step control: Heun + Euler

NTNU

Yy =242t —sin(0.25my), y1=3, h=05, tol=0.01

Second step:

> Evaluate k; = f(tn,yn) =2
» Compute Euler step: yEUr =y, + hky = 4
» Evaluate ky = f(t, + h,yn + hky) = 2.5

» Compute y,41 =y, +h [% + %} =4.125

Error estimate: é,41 = |4.125 — 4| = 0.125>tol

B Time-step control: Heun + Euler

NTNU

Yy =242t —sin(0.25my), y1=3, h=05, tol=0.01

Second step:

> Evaluate k; = f(tn,yn) =2
» Compute Euler step: yEUr =y, + hky = 4
» Evaluate ky = f(t, + h,yn + hky) = 2.5

» Compute y,41 =y, +h [% + %} =4.125

Error estimate: é,41 = |4.125 — 4| = 0.125>tol
= Reduce h and recompute the step:

1 1
Bnew < [(tol)"“] h=(2L)2? x05~0.14

€n+1

B Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

C1]ad1 a2 ... ais .
C|d2 ax» ... ax Yoa =¥+ hZ biki . O+
Pl i
s
Cs | ds1 ds2 ... Ass . - .)
by b, ... b yn+1yn+hz;b,-k,, O(hP)
by by ... b =

B Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

C1|a1 a2 ... ais .
Co a1 ax ... ax Yoi1=Yn+ hz biki, O(hPT1)
I S : —
S
Cs | ds1 ds2 ... dss N B L i
bi by ... b yn+1yn+hz;b,-k,, O(hP)
by by ... b i=

S (bi — b)ks

Therefore, we get simply é,11 = |y, 11— ¥jq| = h ‘
i=1

B Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

C1|a1 a2 ... ais .
C2|axn ax ... ax P hz bk, 0K
. . . . —
s
Cs | ds1 ds2 ... dss N B L i
by by ... b yn+1yn+hz;b,-k,, O(hP)
by by ... b =

Therefore, we get simply é,11 = |y, 11— ¥jq| = h

(b -)|,

i=1

so we can easily compute

1
hnew < [(g:cjrll) p+1] h

