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Introduction
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Introduction

Remember the ODEs we are trying to solve: y'(t) = f(t,y)

Euler's method:

ki = f(tmy,,)
Yni1=Yn,+hki —  O(h)convergence

Heun's method:

ki =f(tn, y,)
ko = f(tn + h,y,, + hkl)
Yni1 =Y, + h[0.5k; +05k;] —  O(h?) convergence

Questions:

» Can we generalise this?
» Can we do better than O(h?)?
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Runge-Kutta methods

RK methods are one-step methods following the general scheme

S
ki = f(t,7 +ch y,+ h;a,-jkj), i=1,..,s (sstages)
J:

s
Ynt1 :yn+hzbfki
i=1

The coefficients are all real numbers, presented in the Butcher tableau:

Ci|a1 d12 ... dis
C | d21 a2 ... dzs
Cs | ads1 ds2 ... dss

b1 by ... bs




Runge-Kutta methods

° C1|a1 a2 ... dis
ki = f(tn +cih y,+hYy a,-jkj) ol
J=1 - .. )
s : : .
yn+1:yn+hzbiki Cs | ds1 ds2 ... Adss
i=1 by by ... b

Euler's method:
k1 = f(t,,,yn)
Yoi1=Yn+ hk1




Runge-Kutta methods

o a|ain a ais
ki = f(tn +cih, y,+ hz a,-jkj> o | a1 am e
j=1 ,
S .
Ynt1 :yn+h2biki Cs | s1  as2 ass
i=1 b1 b bs

(?7?7?) method:




Runge-Kutta methods

ki = f(t,7 +cih, y, + hzs: aijkj>

Jj=1

Yoi1=Ya+h)_ bik
i=1

Heun (3rd-order):
0 0 0

0
1/3|1/3 0 0
2/3| 0 2/3 0

|1/4 0 3/4

€| 411 412 dis
Co | a1 ax azs
Cs | ds1  ds2 dss

by b bs




Consistency

o]
(6]

Cs

di1 412 ... dls
dp1 ag2 ... ans
ds1 ds2 e dss




Consistency

Cl1|ad11 412 ... 4ais
Co|ax ax» ... ass
Cs | ds1 ds2 ... dss
bi by ... bs
Theorem

An RK method is order-p consistent
if, and only if all the conditions up
to p in the table are satisfied




Consistency

p Conditions € |a1 a2 ... ais
1 Zs:b,-ZI Cy | d21 4d22 ... Qazs
,s:1 - . . .
2 i:zlbiq ~2 Cs | ds1 ds2 ... dss
3 > b 1 bi by ... bs
1%~ 3
i=1
A Theorem
bjajic; = + . .
,:21,;1 e An RK method is order-p consistent
4 ZS: bic? = 1 if, an_d only if all the cor?di.tions up
=t to p in the table are satisfied
> 2. biciajci =3
i=1j=1
S S
> X biajg? = 1
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Consistency

Heun's method:

Conditions

S bi=1
i=1

. 1
Z b,'C,' =3
i=1

S
Z b,'C,'2 = %

=1
s

1
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Error estimation
One-step methods:  y,.1 =y, + h®(tn,y,, h)

Question: for a method @, how can we estimate the error
en = |y, — y(ts)|, if we don't know the exact solution y(t)?




Error estimation
One-step methods:  y,.1 =y, + h®(tn,y,, h)

Question: for a method @, how can we estimate the error
en = |y, — y(ts)|, if we don't know the exact solution y(t)?

Idea
Why not use a more accurate method ® to compute &, = |y, — ¥,|?
y
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Error estimation
If €,.1 > tol, we might want to reduce the time-step size h and
recompute the step... but how can we estimate a good hpey, ?
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B Time-step control: Heun + Euler

NTNU
Yy =242 —sin(0.251y), y(0)=2, h=05, tol=0.01
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B Time-step control: Heun + Euler

NTNU
y' =2+27"—sin(0.257y), y(0)=2, h=0.5 tol=0.01

First step:

> Evaluate k1 = f(tn, yn) =2
> Compute Euler step: yEU™ =y, + hky =3
» Evaluate ko = f(t, + h,yn + hk1) =2

> Compute yni1 =yn+h [% + %} =3

Error estimate: é,11 =13 — 3| =0 < tol
= No need to recompute step!

= We can keep has itis,
or even increase it a bit...
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NTNU
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Second step:
> Evaluate k; = f(tn,yn) =2

» Compute Euler step: yEUr =y, + hky = 4
» Evaluate ky = f(t, + h,yn + hky) = 2.5

» Compute y,41 =y, +h [% + %} =4.125
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B Time-step control: Heun + Euler

NTNU

Yy =242t —sin(0.25my), y1=3, h=05, tol=0.01

Second step:

> Evaluate k; = f(tn,yn) =2
» Compute Euler step: yEUr =y, + hky = 4
» Evaluate ky = f(t, + h,yn + hky) = 2.5

» Compute y,41 =y, +h [% + %} =4.125

Error estimate: é,41 = |4.125 — 4| = 0.125>tol
= Reduce h and recompute the step:

1 1
Bnew < [( tol )"“] h=(2L)2? x05~0.14

€n+1



B Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

C1]ad1 a2 ... ais .
C|d2 ax» ... ax Yoa =¥+ hZ biki . O+
Pl i
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B Time-step control: embedded RK

We can combine a higher-order method and a lower-order method as:

C1|a1 a2 ... ais .
C2|axn ax ... ax P hz bk, 0K
. . . . —
s
Cs | ds1 ds2 ... dss N B L i
by by ... b yn+1yn+hz;b,-k,, O(hP)
by by ... b =

Therefore, we get simply é,11 = |y, 11— ¥jq| = h

(b - )|,

i=1

so we can easily compute

1
hnew < [(g:cjrll) p+1] h




