

TMA4125 Matematikk 4N

Numerical methods for ordinary differential equations — Stability and implicit stepping

Ronny Bergmann and Douglas R. Q. Pacheco

Department of Mathematical Sciences, NTNU.

March 1, 2022

Let us consider the following linear equation as our model problem:

$$y'(t) = -ky(t), \quad y(0) = y_0, \quad k > 0$$

Let us consider the following linear equation as our model problem:

$$y'(t) = -ky(t), \quad y(0) = y_0, \quad k > 0 \quad \Rightarrow \quad y(t) = y_0 e^{-kt}$$

Let us consider the following linear equation as our model problem:

$$y'(t) = -ky(t), \quad y(0) = y_0, \quad k > 0 \quad \Rightarrow \quad y(t) = y_0 e^{-kt}$$

We want to investigate how the numerical solution behaves for different time-step sizes *h*, using

Euler's method: $y_{n+1} = y_n + hf(t_n, y_n)$

The implicit Euler method

$$y'(t) = f(t, y(t)), \quad y(0) = y_0$$

The implicit Euler method

$$y'(t) = f(t, y(t)), \quad y(0) = y_0$$

We derived Euler's method starting from $y'(t_n) = f(t_n, y(t_n))$,

The implicit Euler method

$$y'(t) = f(t, y(t)), \quad y(0) = y_0$$

We derived Euler's method starting from $y'(t_n) = f(t_n, y(t_n))$,

but we can also start from $y'(t_{n+1}) = f(t_{n+1}, y(t_{n+1}))$

The implicit Euler method: stability

$$y'(t) = -ky(t), \quad y(0) = y_0$$

Algorithm: $y_{n+1} = y_n + hf(t_n + h, y_{n+1})$

The implicit Euler method: stability

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

In general, we will be able to write the numerical solution as

$$y_{n+1}=[R(\lambda h)]y_n,$$

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

In general, we will be able to write the numerical solution as

$$y_{n+1} = [R(\lambda h)] y_n$$
, so that $y_n = [R(\lambda h)]^n y_0$

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

In general, we will be able to write the numerical solution as

$$y_{n+1} = [R(\lambda h)] y_n$$
, so that $y_n = [R(\lambda h)]^n y_0$

If $|R(\lambda h)| > 1$, then $|y_n| \to \infty$ as $n \to \infty$.

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

In general, we will be able to write the numerical solution as

$$y_{n+1} = [R(\lambda h)] y_n$$
, so that $y_n = [R(\lambda h)]^n y_0$

If $|R(\lambda h)| > 1$, then $|y_n| \to \infty$ as $n \to \infty$. Therefore, we want h such that

$$\lambda h \in S := \{z \in \mathbb{C} : |R(z)| \le 1\}$$

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

In general, we will be able to write the numerical solution as

$$y_{n+1} = [R(\lambda h)] y_n$$
, so that $y_n = [R(\lambda h)]^n y_0$

If $|R(\lambda h)| > 1$, then $|y_n| \to \infty$ as $n \to \infty$. Therefore, we want h such that

$$\lambda h \in S := \{z \in \mathbb{C} : |R(z)| \le 1\}$$

Examples

► Explicit Euler: $y_{n+1} = (1 + \lambda h)y_n$

Let's consider our model problem again, but in a more general form:

$$y'(t) = \lambda y(t), \quad y(0) = y_0, \quad \lambda \in \mathbb{C}$$

In general, we will be able to write the numerical solution as

$$y_{n+1} = [R(\lambda h)] y_n$$
, so that $y_n = [R(\lambda h)]^n y_0$

If $|R(\lambda h)| > 1$, then $|y_n| \to \infty$ as $n \to \infty$. Therefore, we want h such that

$$\lambda h \in S := \{z \in \mathbb{C} : |R(z)| \le 1\}$$

Examples

- ► Explicit Euler: $y_{n+1} = (1 + \lambda h)y_n$
- ► Implicit Euler: $y_{n+1} = \frac{1}{(1-\lambda h)} y_n$

Heun's method: stability

$$y'(t) = \lambda y(t), \quad y(0) = y_0$$

Algorithm:
$$y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))]$$

Heun's method: stability

Exercise: linear scalar ODE

$$y'(t) = -4y(t), \quad y(0) = 1 \quad \Rightarrow \quad y(t) = e^{-4t}$$

Exercise: linear scalar ODE

$$y'(t) = -4y(t), \quad y(0) = 1 \quad \Rightarrow \quad y(t) = e^{-4t}$$

Stability intervals

- ► Euler: $0 < h < \frac{2}{|-4|} = \frac{1}{2}$
- ▶ Implicit Euler: h > 0
- ► Heun: $0 < h < \frac{2}{|-4|} = \frac{1}{2}$

The trapezoidal method

$$\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t))$$

Stability in linear ODE systems

$$i'' + \frac{R}{L}i' + \frac{1}{LC}i = 0, \quad i(0) = i_0$$

Source: Kreyszig, p. 3, cf. also Sec. 2.9 (p. 93)

Stability in linear ODE systems

Exercise: linear ODE system

$$R=2, L=1, C=1/3 \Rightarrow \mathbf{y}'(t) = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \mathbf{y}(t)$$

Eigenvalues: $\lambda_1 = -1$, $\lambda_2 = -2$

Implicit stepping: linear ODE systems

$$\mathbf{y}'(t) = A\mathbf{y}(t) + \mathbf{b}(t)$$

Implicit stepping: linear ODE systems

$$\mathbf{y}'(t) = A\mathbf{y}(t) + \mathbf{b}(t)$$

Explicit Euler: $\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + h\boldsymbol{f}(t_n, \boldsymbol{y}_n)$

Implicit Euler: $\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + h\boldsymbol{f}(t_n + h, \boldsymbol{y}_{n+1})$

Implicit stepping: nonlinear ODEs

$$y'(t) = 2^{t+y}, \quad y(0) = 1, \quad h = 0.1$$

Implicit stepping: nonlinear ODEs

$$y'(t) = 2^{t+y}, \quad y(0) = 1, \quad h = 0.1$$

Explicit Euler: $y_{n+1} = y_n + hf(t_n, y_n)$

Implicit Euler: $y_{n+1} = y_n + hf(t_n + h, y_{n+1})$