

TMA4125 Matematikk 4N

Fourier Series I: Introduction and examples.

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

March 7, 2022

Motivation for periodic functions

We would like to investigate periodic phenomena, for example

- alternating current
- heart beat
- water waves

or in general phenomena that repeat.

This might also happen for complex-valued functions $f : \mathbb{R} \to \mathbb{C}$.

History – Jean-Baptiste Fourier & trigonometric series

Jean-Baptiste Joseph Fourier (1768 – 1830)

- First trigonometric series: Euler (1750), D. Bernoulli (1753)
- Fourier: Propagation of Heat in Solid Bodies
- He postulated

"Every periodic function can be written as a superposition of trigonometric func-tions"

 rejected 1807, revised 1811, published book 1820

NTNI

Periodic functions

Definition. A function $f : \mathbb{R} \to \mathbb{C}$ is called periodic if for some T > 0 it holds

f(x) = f(x + T) holds for all $x \in \mathbb{R}$.

The value T is called the period of f.

The smallest T fulfilling the property above is called the fundamental period of f.

If a function g is $\frac{T}{n}$ periodic for some $n \in \mathbb{N} \setminus \{0\}$, then the number n is also called frequency of g.

- ► Is *g T*-periodic?
- What does g do in one intervall of length T, e.g. [0, T]?

We will usually consider functions with fundamental period $T = 2\pi$.

Periodic functions – Examples.

Examples. What fundamental periods do the following functions have?

What about $f(x) = \sin(nx)$ for some $n \in \mathbb{N} \setminus \{0\}$? fundamental period *T*? frequency in $T = 2\pi$?

NTNU

NTNU

Decomposing functions

- The following function f is $T = 2\pi$ periodic and looks a little chaotic.
- Does the "coarse level look like" sin(x)?.
- Does the "fine level look like it wiggles" like sin(16x)?
- Does the "medium scale look like" cos(3x)?
- What about "medium & coarse" combined? All 3 combined?

NTNU

Decomposing functions

- The following function f is $T = 2\pi$ periodic and looks a little chaotic.
- Does the "coarse level look like" sin(x)?.
- ▶ Does the "fine level look like it wiggles" like sin(16x)?
- Does the "medium scale look like" cos(3x)?
- What about "medium & coarse" combined? All 3 combined?

D NTNU

Composing functions

Given two functions f, g that are T periodic and $\alpha, \beta \in \mathbb{R}$. Then $h(x) = \alpha f(x) + \beta g(x)$ is also T periodic. \Rightarrow Compose functions, for example add

General construction scheme

Idea. use sin(nx) and cos(nx) for $n \in \mathbb{N}$ and cos(0x) = 1 "to construct functions".

For coefficients $a_0, a_n, b_n, n = 1, 2, ...$ (real or complex), we call the function

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx).$$

a Fourier Series.

and we denote the Fourier partial sum f_N , $N \in \mathbb{N}$, by

$$S_N f(x) = f_N(x) = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx).$$

Question. What happens in the limit $\lim_{N \to \infty} f_N(x)$?

Reminder. Vector space (cf. very first lecture)

A complex vector space is a set V together with operations + (addition) and \cdot (multiplication with a scalar) that satisfy

1.
$$x + y \in V$$
 for all $x, y \in V$

2.
$$x + y = y + x$$
 for all $x, y \in V$

3.
$$x + (y + z) = (x + y) + z$$
 for all $x, y, z \in V$

4. There exists some element $0 \in V$ such that x + 0 = x for all $x \in V$

5. For all $x \in V$, there exists some element $(-x) \in V$ s.t. x + (-x) = 0

6.
$$\alpha \cdot x \in V$$
 for all $x \in V$ and $\alpha \in \mathbb{C}$

7.
$$\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x$$
 for all $x \in V$ and $\alpha, \beta \in \mathbb{C}$

8.
$$1 \cdot x = x$$
 for all $x \in V$

9. $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ for all $x, y \in V$ and $\alpha \in \mathbb{C}$ **10.** $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ for all $x \in V$ and $\alpha, \beta \in \mathbb{C}$

Reminder. Inner product

Let V be a complex vector space. Then a mapping $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ is called an inner product if the following properties hold

1. Linearity in the first argument: for all $f, g, h \in V$, $\alpha, \beta \in \mathbb{C}$

$$\langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$

2. Conjugate symmetry: for $f, g \in V$ we have

$$\langle f,g
angle = \overline{\langle g,f
angle}$$

3. Positive definite: for all $f \in V$ it holds

$$\langle f, f \rangle \ge 0$$
 and $\langle f, f \rangle = 0 \Leftrightarrow f = 0$

Example. Let *V* be the space of complex continuous 2π periodic functions. Then

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x)\overline{g(x)} \,\mathrm{d}x$$

is a complex inner product on *V*.

NTNU

Reminder. Euler formula

- Euler's formula states $e^{ix} = \cos(x) + i\sin(x)$
- plugging in -x yields $e^{-ix} = \cos(x) i\sin(x)$
- Adding both yields

$$\cos(x) = \frac{\mathrm{e}^{\mathrm{i}x} + \mathrm{e}^{-\mathrm{i}x}}{2}$$

Subtracting both yields

$$\sin(x) = \frac{\mathrm{e}^{\mathrm{i}x} - \mathrm{e}^{-\mathrm{i}x}}{2i}$$

and we also have e.g.

$$\cos(nx) = \frac{e^{inx} + e^{-inx}}{2} = \frac{(e^{ix})^n + (e^{-ix})^n}{2}$$

- \Rightarrow these are hence also called trigonometric polynomials
- But keep in mind the representation as e^{ix} is a complex function.

The space of trigonometric functions up to degree *N***.** We denote by

$$V_N \coloneqq \left\{ g \mid g = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx), \quad a_0, a_1, \dots, a_N, b_1, \dots, b_N \in \mathbb{C} \right\}$$

the (real) vector space of periodic functions of degree at most *N* (or functions that can be "composed" by sine and cosine up to frequency *N*)

With the equations from last slide we can also consider

$$ilde{V}_N \coloneqq \left\{ g \; \Big| \; g = \sum_{k=-N}^N c_k \mathrm{e}^{\mathrm{i}kx}, \quad c_{-N}, c_{-N+1}, \ldots, c_N \in \mathbb{C}
ight\}$$

the complex vector space of trigonometric polynomials of degree at most *N*.

...and see directly that $V_N = \tilde{V}_N$.

NTNI

A norm on a complex vector space

Observation. As for a real vector space, the complex inner product introduces a norm on *V* given by

$$\|f\| = \sqrt{\langle f, f \rangle}$$

Remember that we have the Cauchy-Schwarz inequality

 $|\langle f,g \rangle| \leq \|f\|\|g\|$

Question. When/how can we "describe" a 2π -periodic function f "best possible" by a function $g \in V_N$, i. e. such that

||g - f|| is as small as possible (among all $g \in V_N$)?

Orthogonal and orthonormal systems

A sequence/family $\{\varphi_n\}_n$ is called

orthogonal if

$$\langle \varphi_k, \varphi_n \rangle = \begin{cases} 0 & \text{if } k \neq n \\ d_n \neq 0 & \text{if } k = n, \end{cases}$$

orthonormal if

$$\langle \varphi_k, \varphi_n \rangle = \begin{cases} 0 & \text{if } k \neq n \\ 1 & \text{if } k = n, \end{cases}$$

Note. All functions φ_k are normed since $\|\varphi_k\| = \sqrt{\langle \varphi_k, \varphi_k \rangle} = 1$ \Rightarrow We can create an orthonormal system from an orthogonal one by rescaling $\tilde{\varphi}_k = \frac{1}{\sqrt{dt}} \varphi_k$

The trigonometric system is orthonormal

Remember. for (complex) 2π periodic functions: $\langle f, g \rangle = \int_{\pi}^{\pi} f(x) \overline{g(x)} dx$.

Example. $\varphi_k = e^{ikx}$, $k \in \mathbb{Z}$, is an orthogonal system.

The trigonometric system is orthonormal II

Example. We consider the family $\{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \ldots\}$ or shorter $\{\sin(kx)\}_{k=1}^{\infty} \cup \{\cos(kx)\}_{k=0}^{\infty}$

How to "best describe" f using V_N ?

Let *f* be a 2π -periodic function, which function is "closest" to *f* from within V_N , i.e. which function $g \in V_N$ minimises ||g - f||?

Example. We can define a 2π periodic function *f* by just defining it on one interval of length 2π and continue the rest:

f(x) = x, for $x \in [-\pi, \pi)$ and periodically continued.

...and how to best compute g (i. e. coefficients a_k , b_k or the c_k s)?

D NTNU

The simpler case – the coefficients of g when f is in V_N

Assume. For the remainder let *V* be a complex vector space with inner product $\langle \cdot, \cdot \rangle$ and an orthogonal system $\{\varphi_k\}_k \subset V$.

 $\Rightarrow V_N := \left\{ g = \sum_{k=1}^N d_k \varphi_k \right\} \text{ is a } N \text{-dimensional subspace spanned by the}$ first N members of $\{\varphi_k\}_k$.

Proposition. A function $f \in V_N$ is of the form

$$f(x) = \sum_{k=1}^{N} c_k \varphi_k.$$

And we can compute the coefficients by

$$c_k = \frac{\langle f, \varphi_k \rangle}{\|\varphi_k\|^2}.$$

Even shorter. If $\{\varphi_k\}_k$ is an orthonormal system, then $c_k = \langle f, \varphi_k \rangle$.

Proof of the simpler case.

(General) Fourier coefficients

Definition. For an orthogonal system $\{\varphi_k\}_k \subset V$ and a given vector/function $f \in V$ the coefficients

$$c_k = rac{\langle f, arphi_k
angle}{\|arphi_k\|^2}.$$

are called (general) Fourier coefficients.

Sometimes we write $\hat{f}(k) = c_k$

Orthogonal Projection

For $f \in V$ we define the **projection** $\Pi_N f \in V_N$ by

$$\Pi_N f = \sum_{k=1}^N c_k \varphi_k \quad \text{with} \quad c_k = \frac{\langle f, \varphi_k \rangle}{\|\varphi_k\|^2}.$$

Observations.

- Π_N is a linear mapping from $f \in V$ to $\Pi_N f \in V_N$
- Π_N is indeed a projection, that is $\Pi_N f = f$ if f is already in V_N
- even more: $\Pi_N f$ is orthogonal in the sense that for any $g \in V_N$ we have

$$\left\langle f - \Pi_N f, g \right\rangle = 0$$

Best approximation theorem

Theorem. Let $f \in V$ be given. Then $\Pi_N f \in V_N$ satisfies

$$\|f-\Pi_N f\|=\min_{g\in V_N}\|f-g\|.$$

Proof. Exactly the same as in lecture 1.

Further properties Proposition. It holds $\|\Pi_N f\| \le \|f\|$.

Corollary. (Bessel's inequality) Let $\{\varphi_k\}_k$ be an orthonormal system. Then for any $N \in \mathbb{N}$ we have

$$\sum_{k=1}^{N} |\hat{f}(k)| \le \|f\|^2.$$

Corollary. (Riemann-Lebesque) Let $||f|| < \infty$ and $\{\varphi_k\}_k$ be an orthonormal family. Then

$$\lim_{k\to\infty}\hat{f}(k)=0$$

(Back to) General Fourier Series

Definition. (General Fourier series for an orthogonal system) Let $\{\varphi_k\}_{k=1}^{\infty}$ be an orthogonal system. Then the formal expression

$$\sum_{k=1}^{\infty} \hat{f}(k) arphi_k, \qquad \hat{f}(k) = rac{\langle f, arphi_k
angle}{\|arphi_k\|^2}$$

is called a general Fourier series.

Since $\Pi_N f = \sum_{k=1}^N \hat{f}(k)\varphi_k$ is the partial sum, so we write $S_N f = \Pi_N f$.

For the specific case for periodic functions we still need

$$V \coloneqq \Big\{ f \colon [-\pi,\pi) \to \mathbb{C} \Big| \int_{-\pi}^{\pi} |f(x)|^2 \,\mathrm{d}x < \infty \Big\},$$

where we assume that the integral exists. Functions $f \in V$ are said to be square-integrable. *V* is indeed a vector space.

D NTNU

Complex trigonometric series / Fourier series

Definition. (Complex Fourier series)

Let f be a 2π -periodic function and consider the orthogonal system

 $\left\{ \mathrm{e}^{\mathrm{i}kx}\right\} _{k\in\mathbb{Z}}$

on $[-\pi, \pi)$. Then the formal series

$$\sum_{k=-\infty}^{\infty} c_k \mathrm{e}^{\mathrm{i}kx}, \quad \text{with } c_k = \frac{\langle f, \mathrm{e}^{\mathrm{i}kx} \rangle}{\|\mathrm{e}^{\mathrm{i}kx}\|^2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i}kx} \, \mathrm{d}x$$

is called the **complex Fourier series** associated with f. We also write $c_k(f)$ or $\hat{f}(k)$ for the c_k .

We write this association also as

$$f\sim\sum_{k=-\infty}^{\infty}c_k\mathrm{e}^{\mathrm{i}kx}$$

Real trigonometric series / Fourier series

Definition. (Real Fourier series)

Let *f* be a 2π -periodic function and consider the orthogonal system

 $\{1\} \cup \{\cos(nx)\}_{n \in \mathbb{N}} \cup \{\sin(nx)\}_{n \in \mathbb{N}}$

Then the formal series associated to f given by

$$f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$

with coefficients

$$a_0 = 2\frac{\langle f, 1 \rangle}{\langle 1, 1 \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x, \qquad a_n = \frac{\langle f, \cos(nx) \rangle}{\|\cos(nx)\|^2} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, \mathrm{d}x$$
$$b_n = \frac{\langle f, \sin(nx) \rangle}{\|\sin(nx)\|^2} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, \mathrm{d}x$$

is called the **(real) Fourier series** associated with *f*. **Note.** a_0 and $a_n, b_n, n \in \mathbb{N}$, are all real values $\Leftrightarrow f$ is real valued.

NTNU

Reminder. Even and odd functions

A function is called even if f(x) = f(-x) holds for all x. A function is called odd if f(x) = -f(-x) holds for all x.

we have the following		
f	g	$f \cdot g$
even	even	even
odd	even	odd
even	od	odd
odd	odd	even

Examples. For $n \in \mathbb{N}$: $\cos(nx)$, is even, $\sin(nx)$ is odd. **Even better.** If f is odd then $\int_{-L}^{L} f(x) dx = 0$ If f is even then $\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$

Relations between the real and complex Fourier series

We can use Eulers formula to relate the (complex) Fourier coefficients c_k and the (real) Fourier coefficients a_0, a_n, b_n :

$$a_{n} = c_{n} + c_{-n}, \qquad n = 0, 1, \dots,$$

$$b_{n} = i(c_{n} - c_{-n}), \qquad n = 1, 2, \dots,$$

$$c_{0} = \frac{a_{0}}{2}$$

$$c_{n} = \frac{a_{n} - ib_{n}}{2}, \qquad n = 1, \dots,$$

$$c_{-n} = \frac{a_{n} + ib_{n}}{2}, \qquad n = 1, 2, \dots,$$

and even more: the projection onto $V_N = \tilde{V}_N$ yield the same partial sum

$$S_N(f) = \sum_{k=-N}^N c_k \mathrm{e}^{\mathrm{i}kx} = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx).$$

 \Rightarrow Choose the coefficients that "fit better".

VTNI

Question. Does $S_N f$ tend to f for $N \to \infty$? And if so, in what sense?

Here we can ask the same question about convergence as well.

NTNU

...but let's turn to Python to really see the effect.