

TMA4125 Matematikk 4N

Fourier Series II: Convergence & further properties

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

March 7, 2022

Convergence – Motivation

We introduced the Fourier series

$$f \sim \sum_{k=-\infty}^{\infty} \hat{f}(k) \mathrm{e}^{\mathrm{i}kx}$$

with

$$\hat{f}(k) = \langle f, \mathrm{e}^{\mathrm{i}kx} \rangle = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i}kx} \, \mathsf{d}x$$

Question. When/For which *x* does

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}(k) \mathrm{e}^{\mathrm{i}kx} = \lim_{N \to \infty} S_N f(x)$$

hold? Remember that $S_N f$ is the Fourier partial sum

$$S_N f(x) = \sum_{k=-N}^N \hat{f}(k) \mathrm{e}^{\mathrm{i}kx}$$

The Nth Dirichlet kernel is defined by

$$D_N(x) = \sum_{k=-N}^{N} e^{ikx}$$

The Nth Dirichlet kernel is defined by

$$D_N(x) = \sum_{k=-N}^{N} e^{ikx} = 1 + 2 \sum_{n=1}^{N} \cos(nx).$$

The Nth Dirichlet kernel is defined by

$$D_N(x) = \sum_{k=-N}^{N} e^{ikx} = 1 + 2 \sum_{n=1}^{N} \cos(nx).$$

And since
$$\int_{-\pi}^{\pi} \cos(nx) = 0$$
 for any $n = 1, 2, \dots$ we get

$$\int_{-\pi}^{\pi} D_N(x) \,\mathrm{d}x = 2\pi.$$

The Nth Dirichlet kernel is defined by

$$D_N(x) = \sum_{k=-N}^{N} e^{ikx} = 1 + 2 \sum_{n=1}^{N} \cos(nx).$$

And since
$$\int_{-\pi}^{\pi} \cos(nx) = 0$$
 for any $n = 1, 2, ...$ we get

$$\int_{-\pi}^{\pi} D_N(x) \,\mathrm{d}x = 2\pi.$$

We can define the normalized Dirichlet Kernel

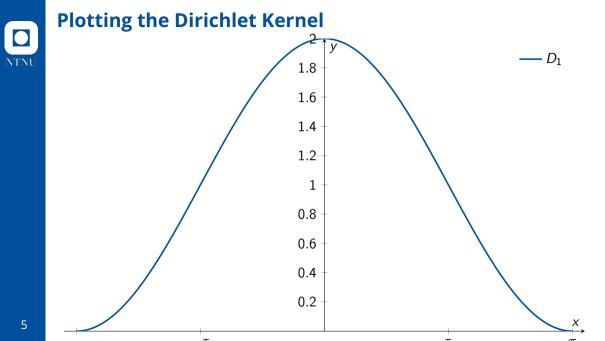
$$ilde{D}_{N}(x)=rac{1}{2\pi}D_{N}(x)$$
 where we get $\int_{-\pi}^{\pi} ilde{D}_{N}(x)\,\mathrm{d}x=1$

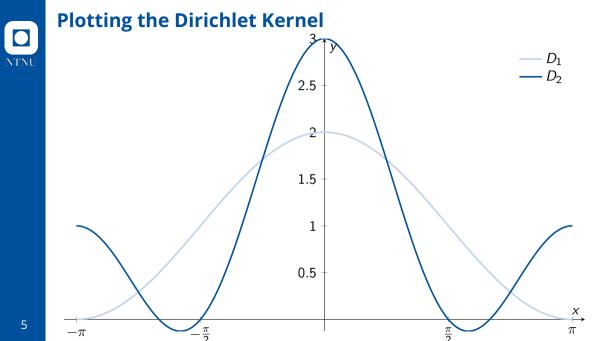
Rewriting the Dirichlet kernel

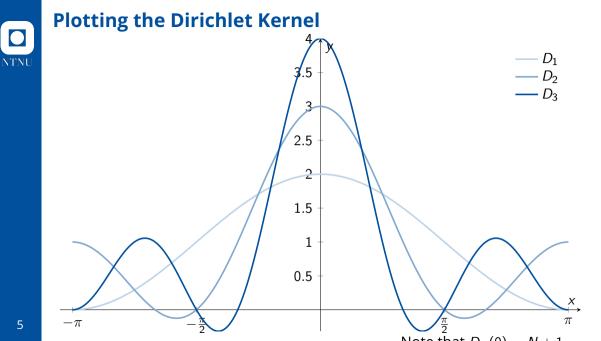
Rewriting the Dirichlet kernel

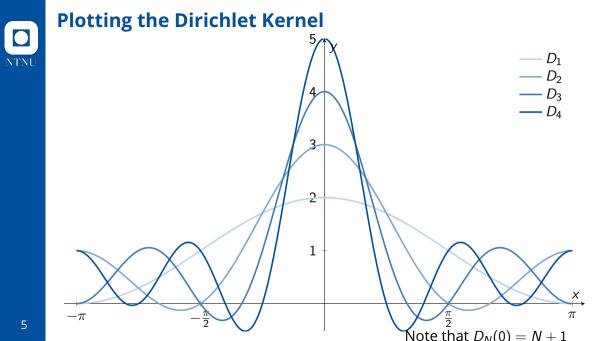
Using a shift in the sum index and the geometric sum with $q = e^{iix}$ we can rewrite

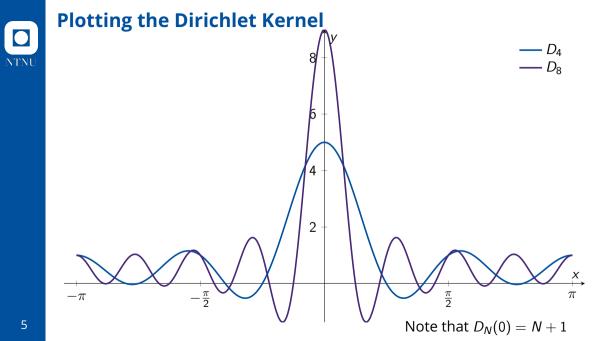
$$D_N(x) = \sum_{k=-N}^{N} e^{ikx} = \frac{\sin\left((N+\frac{1}{2})x\right)}{\sin\left(\frac{x}{2}\right)}$$

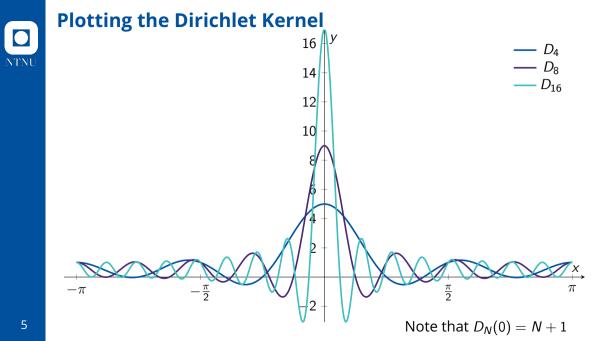


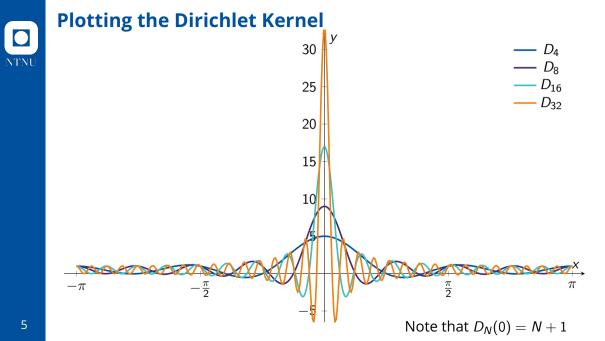












Fourier Partial Sums and the Dirichlet Kernel

NTNU

Fourier Partial Sums and the Dirichlet Kernel

Plugging in the Fourier coefficients, we recognise that

$$S_N f(x) = \int_{-\pi}^{\pi} f(y) \tilde{D}_N(x-y) \, \mathrm{d}y,$$

where \tilde{D}_N is the normalized Dirichlet kernel. But we already saw this operation

Recap. Convolution

Definition. For two 2π -periodic functions f, g the convolution (norsk.: konvolusjon, dt.: Faltung) is denoted by f * g and defined by

$$(f*g)(x) = \int_{-\pi}^{\pi} f(y)g(x-y)\,\mathrm{d}y.$$

Recap. Convolution

Definition. For two 2π -periodic functions f, g the convolution (norsk.: konvolusjon, dt.: Faltung) is denoted by f * g and defined by

$$(f*g)(x) = \int_{-\pi}^{\pi} f(y)g(x-y)\,\mathrm{d}y.$$

Lemma. For two 2π -periodic functions it holds that

$$(f * g)(x) = \int_{-\pi}^{\pi} f(y)g(x - y) \, \mathrm{d}y. = \int_{-\pi}^{\pi} g(y)f(x - y) \, \mathrm{d}y = (g * f)(x).$$

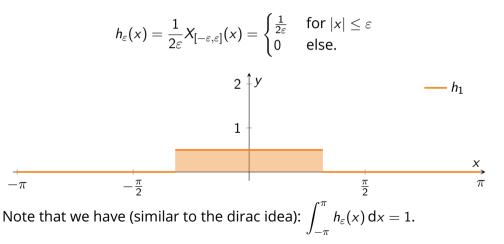
Proof.

D NTNU

Understanding Convolution – Avergaging

Let's convolve our function *f* first with a special function to understand convolutions better.

For 0 $< \varepsilon < \pi$ let h_{ε} be the 2π periodic function given by



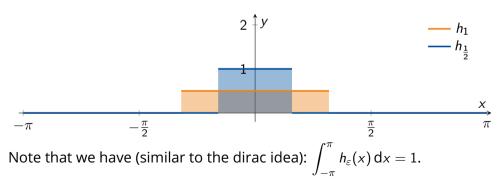
NTNU

Understanding Convolution – Avergaging

Let's convolve our function *f* first with a special function to understand convolutions better.

For 0 $< \varepsilon < \pi$ let h_{ε} be the 2π periodic function given by

$$h_{arepsilon}(x) = rac{1}{2arepsilon} X_{[-arepsilon,arepsilon]}(x) = egin{cases} rac{1}{2arepsilon} & ext{for } |x| \leq arepsilon \ 0 & ext{else.} \end{cases}$$



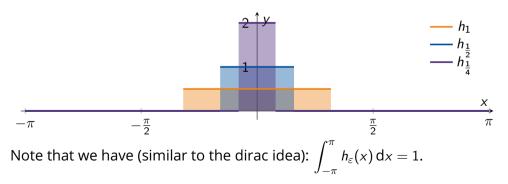
D NTNU

Understanding Convolution – Avergaging

Let's convolve our function *f* first with a special function to understand convolutions better.

For 0 $< \varepsilon < \pi$ let h_{ε} be the 2π periodic function given by

$$h_{\varepsilon}(x) = rac{1}{2\varepsilon} X_{[-\varepsilon,\varepsilon]}(x) = egin{cases} rac{1}{2\varepsilon} & ext{ for } |x| \leq arepsilon \ 0 & ext{ else.} \end{cases}$$



Convolving with h_{ε} (at x = 0)

When we now look at $f * h_{\varepsilon}$ we get

NTNU

Convolving with h_{ε} (at x = 0)

When we now look at $f * h_{\varepsilon}$ we get

$$(f * h_{\varepsilon})(0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(y) \,\mathrm{d}y$$

This is an average value of f on ε -"neighborhood" around 0.

NTNU

Convolving with h_{ε} (at x = 0)

When we now look at $f * h_{\varepsilon}$ we get

$$(f * h_{\varepsilon})(0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(y) \, \mathrm{d}y$$

This is an average value of f on ε -"neighborhood" around 0.

If *f* is "nice enough" we would expect $(f * h_{\varepsilon})(0) \rightarrow f(0)$ as $\varepsilon \rightarrow 0$.

D NTNU

Convolving with h_{ε} (at x = 0)

When we now look at $f * h_{\varepsilon}$ we get

$$(f * h_{\varepsilon})(0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(y) \,\mathrm{d}y$$

This is an average value of f on ε -"neighborhood" around 0.

If *f* is "nice enough" we would expect $(f * h_{\varepsilon})(0) \rightarrow f(0)$ as $\varepsilon \rightarrow 0$.

If *f* is continuous this follows directly from the fundamental theorem of calculus:

For the general case $(f * h_{\varepsilon})(x)$ let's first introduce

- mirror operator $\sigma: f \mapsto \sigma f$ defined by $\sigma f(y) = f(-y)$
- ► translation operator τ_x : $f \mapsto \tau_x f$ given by $\tau_x f(y) = f(y x)$

Then we write h_{ϵ} as

For the general case $(f * h_{\varepsilon})(x)$ let's first introduce

- mirror operator $\sigma: f \mapsto \sigma f$ defined by $\sigma f(y) = f(-y)$
- ► translation operator τ_x : $f \mapsto \tau_x f$ given by $\tau_x f(y) = f(y x)$

Then we write h_{ϵ} as

$$h_{\varepsilon}(x-y) = \tau_x \sigma h_{\varepsilon}(y)$$

So h_{ε} is mirrored first and then translated to x.

For the general case $(f * h_{\varepsilon})(x)$ let's first introduce

- mirror operator $\sigma: f \mapsto \sigma f$ defined by $\sigma f(y) = f(-y)$
- ► translation operator τ_x : $f \mapsto \tau_x f$ given by $\tau_x f(y) = f(y x)$

Then we write h_{ϵ} as

$$h_{\varepsilon}(x-y) = \tau_x \sigma h_{\varepsilon}(y)$$

So h_{ε} is mirrored first and then translated to x. \Rightarrow it "picks" an " ϵ -neighborhood around x" [$x - \varepsilon, x + \varepsilon$].

For the general case $(f * h_{\varepsilon})(x)$ let's first introduce

- mirror operator $\sigma: f \mapsto \sigma f$ defined by $\sigma f(y) = f(-y)$
- ► translation operator τ_x : $f \mapsto \tau_x f$ given by $\tau_x f(y) = f(y x)$

Then we write h_{ϵ} as

$$h_{\varepsilon}(x-y) = \tau_x \sigma h_{\varepsilon}(y)$$

So h_{ε} is mirrored first and then translated to x. \Rightarrow it "picks" an " ϵ -neighborhood around x" [$x - \varepsilon, x + \varepsilon$].

So $(f * h_{\varepsilon})(x)$ represents a sort of average value of f taken in a (small) interval centered at x.

For the general case $(f * h_{\varepsilon})(x)$ let's first introduce

- mirror operator $\sigma: f \mapsto \sigma f$ defined by $\sigma f(y) = f(-y)$
- translation operator τ_x : $f \mapsto \tau_x f$ given by $\tau_x f(y) = f(y x)$

Then we write h_{ϵ} as

$$h_{\varepsilon}(x-y) = \tau_x \sigma h_{\varepsilon}(y)$$

So h_{ε} is mirrored first and then translated to x. \Rightarrow it "picks" an " ϵ -neighborhood around x" $[x - \varepsilon, x + \varepsilon]$.

So $(f * h_{\varepsilon})(x)$ represents a sort of average value of f taken in a (small) interval centered at x.

Similarly to the case x = 0 we get here for a continuous f as well that $f * h_{\varepsilon}(x) \to f(x)$ as $\varepsilon = 0$.

(Back to) Convergence of Fourier Series.

Remember. We saw that we can write the Fourier partial sum as a convolution

$$S_N f(x) = (f * \tilde{D}_N)(x) = \int_{-\pi}^{\pi} f(y) \tilde{D}_N(x-y) \,\mathrm{d}y,$$

with the normalized Dirichlet kernel $\tilde{D}_N(x) = \frac{1}{2\pi}D_N(x)$ which act as the function h_{ε} , since its integral is also 1.

(Back to) Convergence of Fourier Series.

Remember. We saw that we can write the Fourier partial sum as a convolution

$$S_N f(x) = (f * \tilde{D}_N)(x) = \int_{-\pi}^{\pi} f(y) \tilde{D}_N(x-y) \,\mathrm{d}y,$$

with the normalized Dirichlet kernel $\tilde{D}_N(x) = \frac{1}{2\pi}D_N(x)$ which act as the function h_{ε} , since its integral is also 1.

For $N \to \infty$ the "mass" of \tilde{D}_N is still 1 and concentrates around 0.

(Back to) Convergence of Fourier Series.

Remember. We saw that we can write the Fourier partial sum as a convolution

$$S_N f(x) = (f * \tilde{D}_N)(x) = \int_{-\pi}^{\pi} f(y) \tilde{D}_N(x-y) \,\mathrm{d}y,$$

with the normalized Dirichlet kernel $\tilde{D}_N(x) = \frac{1}{2\pi}D_N(x)$ which act as the function h_{ε} , since its integral is also 1.

For $N \to \infty$ the "mass" of \tilde{D}_N is still 1 and concentrates around 0.

So for *f* being "nice enough" we get $\lim_{N\to\infty} S_N f(x) = f(x)$ for any *x*.

Warning on \tilde{D}_N and Lipschitz continuity

Warning. The Dirichlet kernel is "quite nasty", especially since it it's very oscillatory. So there exist functions continuous at x, where $S_N f(x)$ does **not** converge to f(x)!

Warning on \tilde{D}_N and Lipschitz continuity

Warning. The Dirichlet kernel is "quite nasty", especially since it it's very oscillatory. So there exist functions continuous at x, where $S_N f(x)$ does **not** converge to f(x)!

Remedy. A slightly stronger condition on *f* than (just) continuity.

Warning on \tilde{D}_N and Lipschitz continuity

Warning. The Dirichlet kernel is "quite nasty", especially since it it's very oscillatory. So there exist functions continuous at x, where $S_N f(x)$ does **not** converge to f(x)!

Remedy. A slightly stronger condition on *f* than (just) continuity.

Definition. A function *f* is Lipschitz continuous at *x* if

 $|f(x-y) - f(x)| \le M|y|$ for all $y \in (-\pi, \pi)$

f is called Lipschitz (with constant *M*) if it is Lipschitz at all $x \in [-\pi, \pi]$.

Pointwise Convergence of Fourier Series I

Theorem. (Pointwise convergence of Fourier Series for Lipschitz continuous functions)

Let f be a 2π -periodic function which is square integrable and Lipschitz with constant M.

Then

$$S_N f(x) = \sum_{n=-N}^N c_k \mathrm{e}^{\mathrm{i}kx} o f(x) \quad ext{for } N o \infty$$

for any $x \in [-\pi, \pi)$. This we also call pointwise convergence.

Proof. You can find the proof in an extra note in the wiki.

Pointwise Convergence of Fourier Series I

Theorem. (Pointwise convergence of Fourier Series for Lipschitz continuous functions)

Let f be a 2π -periodic function which is square integrable and Lipschitz with constant M.

Then

$$S_N f(x) = \sum_{n=-N}^N c_k \mathrm{e}^{\mathrm{i}kx} o f(x) \quad ext{for } N o \infty$$

for any $x \in [-\pi, \pi)$. This we also call pointwise convergence.

Proof. You can find the proof in an extra note in the wiki.

Note. If the function is continuously differentiable, it is Lipschitz.

Pointwise Convergence of Fourier Series II Theorem.

Let *f* be a 2π periodic function that is piecewise continously differentiable such that at a jump the left and right hand side limits

$$f(x^-) \coloneqq \lim_{y \to x^-} f(x)$$
 and $f(x^+) \coloneqq \lim_{y \to x^+} f(x)$

as well as the left and right derivatives at the jumps x

$$\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} \quad \text{and} \quad \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$

exist.

Pointwise Convergence of Fourier Series II Theorem.

Let *f* be a 2π periodic function that is piecewise continously differentiable such that at a jump the left and right hand side limits

$$f(x^-) \coloneqq \lim_{y \to x^-} f(x)$$
 and $f(x^+) \coloneqq \lim_{y \to x^+} f(x)$

as well as the left and right derivatives at the jumps x

$$\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} \quad \text{and} \quad \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$

exist. Then the Fourier series converges to the mit point

$$\lim_{N\to\infty}S_Nf(x)=\frac{1}{2}(f(x^-)+f(x^+))$$

At points where f is continuous, we obtain pointwise convergence to f

$$\lim_{N \to \infty} S_N f(x) = \frac{1}{2} \big(f(x^-) + f(x^+) \big) = f(x) \text{ on } x \in (-\pi,\pi)$$

Pointwise Convergence of Fourier Series II Theorem.

Let *f* be a 2π periodic function that is piecewise continously differentiable such that at a jump the left and right hand side limits

$$f(x^-) \coloneqq \lim_{y \to x^-} f(x)$$
 and $f(x^+) \coloneqq \lim_{y \to x^+} f(x)$

as well as the left and right derivatives at the jumps x

$$\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} \quad \text{and} \quad \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$

exist. Then the Fourier series converges to the mit point

$$\lim_{N\to\infty}S_Nf(x)=\frac{1}{2}(f(x^-)+f(x^+))$$

At points where f is continuous, we obtain pointwise convergence to f

$$\lim_{N\to\infty}S_Nf(x)=\frac{1}{2}\big(f(x^-)+f(x^+)\big)=f(x) \text{ on } x\in(-\pi,\pi)$$

Proof. We omit the proof here.

*L*² convergence

Remember the space of square integrable functions

$$V = \left\{ f \colon [-\pi,\pi)
ightarrow \mathbb{C} \mid \|f\|^2 = \int_{-\pi}^{\pi} |f(x)|^2 \, \mathrm{d}x < \infty
ight\}$$

Here ||f|| is also called the L^2 -norm.

¹cf. Plonka, Potts, Steidl, Tasche: Numerical Fourier Analysis, Birkhäuser, 2018, Section 1.3

L² convergence

Remember the space of square integrable functions

$$V = \left\{ f : [-\pi,\pi)
ightarrow \mathbb{C} \mid \|f\|^2 = \int_{-\pi}^{\pi} |f(x)|^2 \, \mathrm{d}x < \infty
ight\}$$

Here ||f|| is also called the L^2 -norm.

Theorem 3. Let $f \in L^2((-\pi, \pi))$. Then $S_N f = \prod_N f$ converges to f in L^2 norm, i. e.

$$\lim_{N\to\infty} \|f-S_Nf\|=0$$

¹cf. Plonka, Potts, Steidl, Tasche: Numerical Fourier Analysis, Birkhäuser, 2018, Section 1.3

*L*² convergence

Remember the space of square integrable functions

$$V = \left\{ f \colon [-\pi,\pi) \to \mathbb{C} \mid \|f\|^2 = \int_{-\pi}^{\pi} |f(x)|^2 \, \mathrm{d}x < \infty \right\}$$

Here ||f|| is also called the L^2 -norm.

Theorem 3. Let $f \in L^2((-\pi, \pi))$. Then $S_N f = \prod_N f$ converges to f in L^2 norm, i. e.

$$\lim_{N\to\infty} \|f-S_Nf\|=0$$

Proof. Omitted.¹

¹cf. Plonka, Potts, Steidl, Tasche: Numerical Fourier Analysis, Birkhäuser, 2018, Section 1.3

Fourier Series on [-L, L] – Idea

We can also consider functions of period 2L, L > 0. Idea. "Stretch/Squeeze" all formulae we had until now.

Example. since sin x is 2π -periodic, sin $\frac{\pi}{L}$ x is 2*L*-periodic.

Fourier Series on [-L, L] – Idea

We can also consider functions of period 2L, L > 0. **Idea.** "Stretch/Squeeze" all formulae we had until now.

Example. since sin x is 2π -periodic, sin $\frac{\pi}{L}x$ is 2*L*-periodic. Then $\left\{ e^{\frac{ikx\pi}{L}} \right\}_{k \in \mathbb{Z}} \quad \text{and} \quad \left\{ \cos \frac{n\pi x}{L} \right\}_{n=0}^{\infty} \cup \left\{ \sin \frac{n\pi x}{L} \right\}_{n=1}^{\infty}$

are orthogonal systems on [-L, L] with respect to the scalar product

$$\langle f,g\rangle = \int_{-L}^{L} f(x)\overline{g(x)} \,\mathrm{d}x$$

Fourier Series on [-L, L]

The Fourier series read

$$f \sim \sum_{k=-\infty}^{\infty} c_k \mathrm{e}^{rac{\mathrm{i}kx\pi}{L}}, \qquad c_k = rac{1}{2L} \int_{-L}^{L} f(x) \mathrm{e}^{-rac{\mathrm{i}kx\pi}{L}} \, \mathrm{d}x$$

and

$$f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}$$

with coefficients

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, \mathrm{d}x, \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} \, \mathrm{d}x, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} \, \mathrm{d}x.$$

Even and odd extensions

Definition. (nearly a reminder)

A function *f* on a symmetric interval I = [-L, L], L > 0, is called

- ▶ is called even if f(x) = f(-x) holds for all $x \in I$.
- ▶ is called odd if f(x) = -f(-x) holds for all $x \in I$.

Even and odd extensions

Definition. (nearly a reminder)

A function *f* on a symmetric interval I = [-L, L], L > 0, is called

- ▶ is called even if f(x) = f(-x) holds for all $x \in I$.
- ▶ is called odd if f(x) = -f(-x) holds for all $x \in I$.

These mean that it is enough to know a function on half the interval and we can extend it

Definition. For $f: [0, L] \to \mathbb{R}$ we define its

Even and odd extensions

Definition. (nearly a reminder)

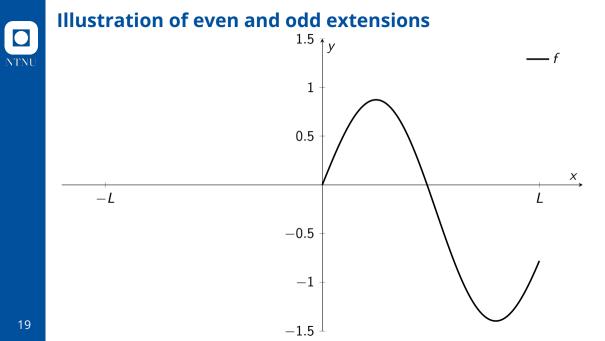
A function *f* on a symmetric interval I = [-L, L], L > 0, is called

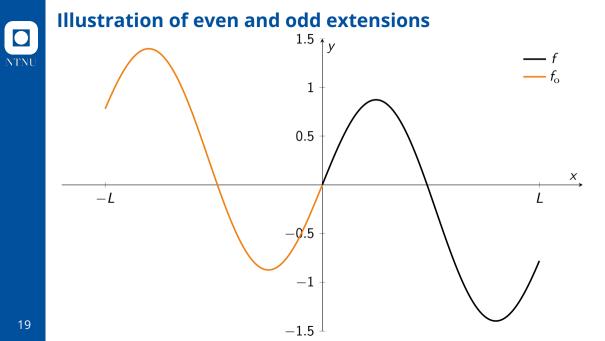
- ▶ is called even if f(x) = f(-x) holds for all $x \in I$.
- ▶ is called odd if f(x) = -f(-x) holds for all $x \in I$.

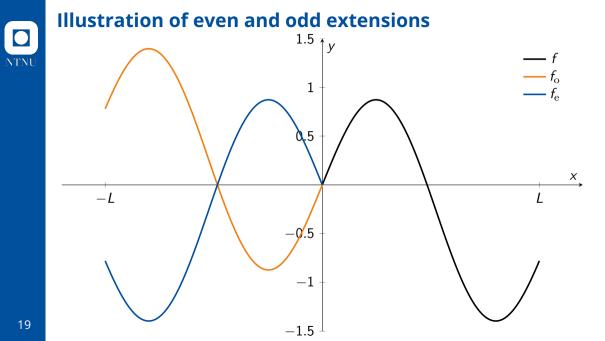
These mean that it is enough to know a function on half the interval and we can extend it

Definition. For $f: [0, L] \to \mathbb{R}$ we define its

Note. Both f_{o} and f_{e} extend f from [0, L] to [-L, L].







Observation for extensions

Observe that we can compute the Fourier series of $f_{\rm e}$ and $f_{\rm o}$ by just using *f*.

Observation for extensions

Observe that we can compute the Fourier series of $f_{\rm e}$ and $f_{\rm o}$ by just using *f*.

For $f_{\rm o}$ we get

$$a_0(f_0) = 0$$
 $a_n(f_0) = 0$ $b_n(f_0) = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$

or in other words a sine series

Observation for extensions

Observe that we can compute the Fourier series of $f_{\rm e}$ and $f_{\rm o}$ by just using *f*.

For $f_{\rm o}$ we get

$$a_0(f_0) = 0$$
 $a_n(f_0) = 0$ $b_n(f_0) = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$

or in other words a sine series

For $f_{\rm e}$ we get

$$a_0(f_e) = \frac{2}{L} \int_0^L f(x) \, dx \qquad a_n(f_e) = \frac{2}{L} \int_0^L f(x) \cos \frac{n \pi x}{L} \, dx \qquad b_n(f_e) = 0$$

or in other words a cosine series

Parseval Identity

Theorem.

Let *f* be given such that $\int_{-L}^{L} |f(x)|^2 dx$ exists and is finite (or similarly: $f \in L^2((-L, L))$). Let

$$f \sim \sum_{k=-\infty}^{\infty} c_k e^{\frac{ikx\pi}{L}}$$
$$\sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}$$

Then

$$\frac{1}{2L} \|f\|^2 = \frac{1}{2L} \int_{-L}^{L} |f(x)|^2 \, \mathrm{d}x = \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Proof.

Application of Parsevals Identity For the heaviside function $u(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ defined on $x \in [-\pi, \pi]$

we can compute its Fourier series

$$u(x) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x$$

and *u* is smooth in $x = \frac{\pi}{2}$ and satisfies the assumptions of the last theorem.

Application of Parsevals Identity For the heaviside function $u(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ defined on $x \in [-\pi, \pi]$

we can compute its Fourier series

$$u(x) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x$$

and *u* is smooth in $x = \frac{\pi}{2}$ and satisfies the assumptions of the last theorem.

Thus

$$1 = u\left(\frac{\pi}{2}\right) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)\frac{\pi}{2}$$

Application of Parsevals Identity For the heaviside function $u(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ defined on $x \in [-\pi, \pi]$

we can compute its Fourier series

$$u(x) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x$$

and u is smooth in $x = \frac{\pi}{2}$ and satisfies the assumptions of the last theorem.

Thus

$$1 = u\left(\frac{\pi}{2}\right) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)\frac{\pi}{2}$$

Note that the sine alternates between ± 1 at the points. Thus rearranging vields

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots = \frac{\pi}{2} \left(1 - \frac{1}{2} \right) = \frac{\pi}{4}$$

Spectrum of periodic functions

For a 2L-periodic function we defined its Fourier series as

$$f \sim \sum_{k=-\infty}^{\infty} \hat{f}(k) \mathrm{e}^{\mathrm{i}kx rac{\pi}{L}}$$

where

$$\hat{f}(k) = c_k = rac{1}{2L} \int_{-L}^{L} f(x) \mathrm{e}^{-\mathrm{i}kx rac{\pi}{L}} \, \mathrm{d}x \in \mathbb{C}.$$

We can associate with f a sequence of pairs $(c_k, \frac{k}{2L})_{k \in \mathbb{Z}}$. which is called the spectrum of f.

Amplitude

NTNU

Since $\hat{f}(k) = c_k \in C$ we can also write this complex number as

$$c_k = |c_k| \mathrm{e}^{\mathrm{i} \theta_k},$$

where $|c_k| \in \mathbb{R}$ is the amplitude and θ_k is the phase.

Amplitude

NTNU

Since $\hat{f}(k) = c_k \in C$ we can also write this complex number as

$$c_k = |c_k| \mathrm{e}^{\mathrm{i} \theta_k},$$

where $|c_k| \in \mathbb{R}$ is the amplitude and θ_k is the phase.

The number $\frac{1}{2L}$ is called the frequency.

Further properties

- ▶ real functions and $c_k(f)$ if f is real-valued, then $c_k(f) = \overline{c_{-k}(f)}$
- ► Linearity. the Fourier coefficients of $h_1(x) = \alpha f(x) + \beta g(x)$ ($\alpha, \beta \in \mathbb{R}$) are given by $c_k(h_1) = \alpha c_k(f) + \beta c_k(g)$ for $k \in \mathbb{Z}$.

Further properties

- ▶ real functions and $c_k(f)$ if f is real-valued, then $c_k(f) = \overline{c_{-k}(f)}$
- ► Linearity. the Fourier coefficients of $h_1(x) = \alpha f(x) + \beta g(x)$ ($\alpha, \beta \in \mathbb{R}$) are given by $c_k(h_1) = \alpha c_k(f) + \beta c_k(g)$ for $k \in \mathbb{Z}$.
- ► Translation of a function: For $h_2(x) = f(x x_0)$ for some $x_0 \in [-\pi, \pi)$ yields the Fourier coefficients are $c_k(h_2) = e^{ikx_0}c_k(f)$.

Further properties

- ▶ real functions and $c_k(f)$ if f is real-valued, then $c_k(f) = \overline{c_{-k}(f)}$
- ► Linearity. the Fourier coefficients of $h_1(x) = \alpha f(x) + \beta g(x)$ ($\alpha, \beta \in \mathbb{R}$) are given by $c_k(h_1) = \alpha c_k(f) + \beta c_k(g)$ for $k \in \mathbb{Z}$.
- ► Translation of a function: For $h_2(x) = f(x x_0)$ for some $x_0 \in [-\pi, \pi)$ yields the Fourier coefficients are $c_k(h_2) = e^{ikx_0}c_k(f)$.
- ▶ Modulation of a function: For $h_3(x) = e^{-ik_0} f(x)$ for some $k_0 \in \mathbb{Z}$ the Fourier coefficients are $c_k(h_3) = c_{k+k_0}(f)$.

Further properties

- ▶ real functions and $c_k(f)$ if f is real-valued, then $c_k(f) = \overline{c_{-k}(f)}$
- ► Linearity. the Fourier coefficients of $h_1(x) = \alpha f(x) + \beta g(x)$ ($\alpha, \beta \in \mathbb{R}$) are given by $c_k(h_1) = \alpha c_k(f) + \beta c_k(g)$ for $k \in \mathbb{Z}$.
- ► Translation of a function: For $h_2(x) = f(x x_0)$ for some $x_0 \in [-\pi, \pi)$ yields the Fourier coefficients are $c_k(h_2) = e^{ikx_0}c_k(f)$.
- ▶ Modulation of a function: For $h_3(x) = e^{-ik_0} f(x)$ for some $k_0 \in \mathbb{Z}$ the Fourier coefficients are $c_k(h_3) = c_{k+k_0}(f)$.
- Differentiation. if f is absolutely continuous and both f, f' are on L₁ (their absolute value ins integrable) then

$$c_k(f') = 2\pi \mathrm{i} k c_k(f)$$

Addendum: Convolution and Fourier Coefficients Using $(f * g)(x) = \int_{-\pi}^{\pi} f(y)g(x - y)$ we compute (for $k \in \mathbb{Z}$)

$$c_k(f * g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(y)g(x - y) \, \mathrm{d}y \, \mathrm{e}^{-\mathrm{i}kx} \, \mathrm{d}x$$

We use Fubini to switch the integrals, substitute t = x - y in the inner integral (w.r.t *x*) and we "snuck in" with $1 = e^{iky}e^{-iky}$

$$egin{aligned} & \mathcal{L}_k(f*g) = rac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \mathrm{e}^{-\mathrm{i}ky} \int_{-\pi}^{\pi} g(x-y) \mathrm{e}^{-\mathrm{i}k(x-y)} \, \mathrm{d}x \, \mathrm{d}y \ & = 2\pi rac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \mathrm{e}^{\mathrm{i}ky} rac{1}{2\pi} \int_{-\pi}^{\pi} g(t) \mathrm{e}^{-\mathrm{i}kt} \, \mathrm{d}t \, \mathrm{d}y \end{aligned}$$

now the inner integral is $c_k(g)$ and indepent of y, the remaining one is then just $c_k(f)$ - in summary

$$c_k(f * g) = 2\pi c_k(g) c_k(f)$$

Note. Some books define the convolution with a factor $\frac{1}{2\pi}$ upfront, then it vanishes in the last line here as well.