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Convergence – Motivation
We introduced the Fourier series

f ∼
∞∑

k=−∞
f̂ (k)eikx

with
f̂ (k) = ⟨f , eikx⟩ = 1

2π

∫ π

−π
f (x)e−ikx dx

Question. When/For which x does

f (x) =
∞∑

k=−∞
f̂ (k)eikx = lim

N→∞
SN f (x)

hold?
Remember that SN f is the Fourier partial sum

SN f (x) =
N∑

k=−N

f̂ (k)eikx
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The Dirichlet kernel
The Nth Dirichlet kernel is defined by

DN(x) =
N∑

k=−N

eikx

= 1 + 2
N∑

n=1

cos(nx).

And since
∫ π

−π
cos(nx) = 0 for any n = 1, 2, . . . we get

∫ π

−π
DN(x)dx = 2π.

We can define the normalized Dirichlet Kernel

D̃N(x) =
1
2π

DN(x) where we get
∫ π

−π
D̃N(x)dx = 1
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Rewriting the Dirichlet kernel

Using a shift in the sum index and the geometric sum with q = eiix we
can rewrite

DN(x) =
N∑

k=−N

eikx =
sin

(
(N + 1

2)x
)

sin
(
x
2

)
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Plotting the Dirichlet Kernel
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Plotting the Dirichlet Kernel

−π −π
2

π
2

π

1

2

3

4

5

x

y
D1
D2
D3
D4

Note that DN(0) = N + 1



5

Plotting the Dirichlet Kernel
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Plotting the Dirichlet Kernel
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Plotting the Dirichlet Kernel
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Fourier Partial Sums and the Dirichlet Kernel

Plugging in the Fourier coefficients, we recognise that

SN f (x) =

∫ π

−π
f (y)D̃N(x − y)dy ,

where D̃N is the normalized Dirichlet kernel. But we already saw this
operation
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Recap. Convolution
Definition. For two 2π-periodic functions f , g the convolution (norsk.:
konvolusjon, dt.: Faltung) is denoted by f ∗ g and defined by

(f ∗ g)(x) =
∫ π

−π
f (y)g(x − y)dy .

Lemma. For two 2π-periodic functions it holds that

(f ∗ g)(x) =
∫ π

−π
f (y)g(x − y)dy . =

∫ π

−π
g(y)f (x − y)dy = (g ∗ f )(x).

Proof.
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Understanding Convolution – Avergaging
Let’s convolve our function f first with a special function to understand
convolutions better.
For 0 < ε < π let hε be the 2π periodic function given by

hε(x) =
1
2ε

X[−ε,ε](x) =

{
1
2ε for |x | ≤ ε

0 else.

−π −π
2

π
2

π

1

2

x

y h1

Note that we have (similar to the dirac idea):
∫ π

−π
hε(x)dx = 1.
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Convolving with hε (at x = 0)
When we now look at f ∗ hε we get

(f ∗ hε)(0) =
1
2ε

∫ ε

−ε
f (y)dy

This is an average value of f on ε-“neighborhood” around 0.

If f is “nice enough” we would expect (f ∗ hε)(0) → f (0) as ε → 0.

If f is continuous this follows directly from the fundamental theorem of
calculus:
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Convolving with hε

For the general case (f ∗ hε)(x) let‘s first introduce

▶ mirror operator σ : f 7→ σf defined by σf (y) = f (−y)

▶ translation operator τx : f 7→ τx f given by τx f (y) = f (y − x)

Then we write hϵ as

hε(x − y) = τxσhε(y)

So hε is mirrored first and then translated to x .
⇒ it “picks” an “ϵ-neighborhood around x” [x − ε, x + ε].

So (f ∗ hε)(x) represents a sort of average value of f
taken in a (small) interval centered at x .

Similarly to the case x = 0 we get here for a continuous f as well that
f ∗ hε(x) → f (x) as ε = 0.
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(Back to) Convergence of Fourier Series.

Remember. We saw that we can write the Fourier partial sum as a
convolution

SN f (x) = (f ∗ D̃N)(x) =

∫ π

−π
f (y)D̃N(x − y)dy ,

with the normalized Dirichlet kernel D̃N(x) =
1
2πDN(x)

which act as the function hε, since its integral is also 1.

For N → ∞ the “mass” of D̃N is still 1 and concentrates around 0.

So for f being “nice enough” we get lim
N→∞

SN f (x) = f (x) for any x .
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Warning on D̃N and Lipschitz continuity

Warning. The Dirichlet kernel is “quite nasty”, especially since it it’s very
oscillatory. So there exist functions continuous at x , where SN f (x) does
not converge to f (x)!

Remedy. A slightly stronger condition on f than (just) continuity.

Definition. A function f is Lipschitz continuous at x if

|f (x − y)− f (x)| ≤ M|y | for all y ∈ (−π, π)

f is called Lipschitz (with constantM) if it is Lipschitz at all x ∈ [−π, π].
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Pointwise Convergence of Fourier Series I
Theorem. (Pointwise convergence of Fourier Series for Lipschitz
continuous functions)

Let f be a 2π-periodic function which is square integrable and Lipschitz
with constantM .

Then

SN f (x) =
N∑

n=−N

ckeikx → f (x) for N → ∞

for any x ∈ [−π, π).
This we also call pointwise convergence.

Proof. You can find the proof in an extra note in the wiki.

Note. If the function is continuously differentiable, it is Lipschitz.
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Pointwise Convergence of Fourier Series II
Theorem.
Let f be a 2π periodic function that is piecewise continously
differentiable such that at a jump the left and right hand side limits

f (x−) := lim
y→x−

f (x) and f (x+) := lim
y→x+

f (x)

as well as the left and right derivatives at the jumps x

lim
h→0−

f (x + h)− f (x)

h
and lim

h→0+

f (x + h)− f (x)

h

exist.

Then the Fourier series converges to the mit point

lim
N→∞

SN f (x) =
1
2
(
f (x−) + f (x+)

)
At points where f is continuous, we obtain pointwise convergence to f

lim
N→∞

SN f (x) =
1
2
(
f (x−) + f (x+)

)
= f (x) on x ∈ (−π, π)

Proof. We omit the proof here.
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L2 convergence

Remember the space of square integrable functions

V =
{
f : [−π, π) → C

∣∣∣ ∥f ∥2 =

∫ π

−π
|f (x)|2 dx < ∞

}
Here ∥f ∥ is also called the L2-norm.

Theorem 3. Let f ∈ L2((−π, π)). Then SN f = ΠN f converges to f in L2

norm, i. e.
lim

N→∞
∥f − SN f ∥ = 0

Proof. Omitted.1

1cf. Plonka, Potts, Steidl, Tasche: Numerical Fourier Analysis, Birkhäuser, 2018,
Section 1.3
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Fourier Series on [−L, L] – Idea

We can also consider functions of period 2L, L > 0.
Idea. “Stretch/Squeeze” all formulae we had until now.

Example. since sin x is 2π-periodic, sin π
Lx is 2L-periodic.

Then {
e

ikxπ
L

}
k∈Z

and
{
cos

nπx

L

}∞

n=0
∪
{
sin

nπx

L

}∞

n=1

are orthogonal systems on [−L, L] with respect to the scalar product

⟨f , g⟩ =
∫ L

−L
f (x)g(x)dx
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Fourier Series on [−L, L]

The Fourier series read

f ∼
∞∑

k=−∞
cke

ikxπ
L , ck =

1
2L

∫ L

−L
f (x)e−

ikxπ
L dx

and
f ∼ a0

2
+

∞∑
n=1

an cos
nπx

L
+ bn sin

nπx

L

with coefficients

a0 =
1
L

∫ L

−L
f (x)dx , an =

1
L

∫ L

−L
f (x) cos

nπx

L
dx , bn =

1
L

∫ L

−L
f (x) sin

nπx

L
dx .
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Even and odd extensions
Definition. (nearly a reminder)
A function f on a symmetric interval I = [−L, L], L > 0, is called
▶ is called even if f (x) = f (−x) holds for all x ∈ I .
▶ is called odd if f (x) = −f (−x) holds for all x ∈ I .

These mean that it is enough to know a function on half the interval
and we can extend it

Definition. For f : [0, L] → R we define its

▶ odd extension fo(x) =

{
f (x) if x ∈ [0, L)
−f (−x) if x ∈ (−L, 0)

▶ even extension fe(x) =

{
f (x) if x ∈ [0, L)
f (−x) if x ∈ (−L, 0)

Note. Both fo and fe extend f from [0, L] to [−L, L].
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▶ is called odd if f (x) = −f (−x) holds for all x ∈ I .

These mean that it is enough to know a function on half the interval
and we can extend it

Definition. For f : [0, L] → R we define its

▶ odd extension fo(x) =

{
f (x) if x ∈ [0, L)
−f (−x) if x ∈ (−L, 0)

▶ even extension fe(x) =

{
f (x) if x ∈ [0, L)
f (−x) if x ∈ (−L, 0)

Note. Both fo and fe extend f from [0, L] to [−L, L].
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Illustration of even and odd extensions
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Observation for extensions
Observe that we can compute the Fourier series of fe and fo by just
using f .

For fo we get

a0(fo) = 0 an(fo) = 0 bn(fo) =
2
L

∫ L

0
f (x) sin

nπx

L
dx

or in other words a sine series

For fe we get

a0(fe) =
2
L

∫ L

0
f (x)dx an(fe) =

2
L

∫ L

0
f (x) cos

nπx

L
dx bn(fe) = 0

or in other words a cosine series
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Parseval Identity
Theorem.
Let f be given such that

∫ L

−L
|f (x)|2 dx exists and is finite (or similarly:

f ∈ L2((−L, L))). Let

f ∼
∞∑

k=−∞
cke

ikxπ
L

∼ a0

2
+

∞∑
n=1

an cos
nπx

L
+ bn sin

nπx

L

Then

1
2L

∥f ∥2 =
1
2L

∫ L

−L
|f (x)|2 dx =

∞∑
k=−∞

|ck |2 =
a2
0
2

+
1
2

∞∑
n=1

(a2
n + b2

n)

Proof.
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Application of Parsevals Identity
For the heaviside function u(x) =

{
1 if x ≥ 0
0 if x < 0

defined on x ∈ [−π, π]

we can compute its Fourier series

u(x) ∼ 1
2
+

2
π

∞∑
n=1

1
2n − 1

sin(2n − 1)x

and u is smooth in x = π
2 and satisfies the assumptions of the last

theorem.

Thus
1 = u

(π
2
)
=

1
2
+

2
π

∞∑
n=1

1
2n − 1

sin(2n − 1)
π

2

Note that the sine alternates between ±1 at the points. Thus
rearranging yields

∞∑
k=0

(−1)k

(2k + 1)
= 1 − 1

3
+

1
5
− 1

7
+ . . . =

π

2
(
1 − 1

2
)
=

π

4
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Spectrum of periodic functions

For a 2L-periodic function we defined its Fourier series as

f ∼
∞∑

k=−∞
f̂ (k)eikx π

L

where
f̂ (k) = ck =

1
2L

∫ L

−L
f (x)e−ikx π

L dx ∈ C.

We can associate with f a sequence of pairs
(
ck ,

k
2L

)
k∈Z. which is called

the spectrum of f .
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Amplitude

Since f̂ (k) = ck ∈ C we can also write this complex number as

ck = |ck |eiθk ,

where |ck | ∈ R is the amplitude and θk is the phase.

The number 1
2L is called the frequency.
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Further properties
If we have two 2π-periodic functions f , g with associated Fourier series∑

k∈Z ck(f )e
ikx and

∑
k∈Z ck(g)e

ikx .

▶ real functions and ck(f ) if f is real-valued, then ck(f ) = c−k(f )

▶ Linearity. the Fourier coefficients of h1(x) = αf (x) + βg(x) (α, β ∈ R)
are given by ck(h1) = αck(f ) + βck(g) for k ∈ Z.

▶ Translation of a function: For h2(x) = f (x − x0) for some x0 ∈ [−π, π)
yields the Fourier coefficients are ck(h2) = eikx0ck(f ).

▶ Modulation of a function: For h3(x) = e−ik0f (x) for some k0 ∈ Z the
Fourier coefficients are ck(h3) = ck+k0(f ).

▶ Differentiation. if f is absolutely continuous and both f , f ′ are on L1
(their absolute value ins integrable) then

ck(f
′) = 2πikck(f )
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Addendum: Convolution and Fourier Coefficients
Using (f ∗ g)(x) =

∫ π
−π f (y)g(x − y) we compute (for k ∈ Z)

ck(f ∗ g) =
1
2π

∫ π

−π

∫ π

−π
f (y)g(x − y)dy e−ikx dx

We use Fubini to switch the integrals, substitute t = x − y in the inner
integral (w.r.t x ) and we “snuck in” with 1 = eikye−iky

ck(f ∗ g) =
1
2π

∫ π

−π
f (y)e−iky

∫ π

−π
g(x − y)e−ik(x−y) dx dy

= 2π
1
2π

∫ π

−π
f (y)eiky 1

2π

∫ π

−π
g(t)e−ikt dt dy

now the inner integral is ck(g) and indepent of y , the remaining one is
then just ck(f ) - in summary

ck(f ∗ g) = 2πck(g)ck(f )

Note. Some books define the convolution with a factor 1
2π upfront, then

it vanishes in the last line here as well.


